Functional inks for inkjet-, aerosol- and screen-printing technologies - Printed electronics and sensor applications

Topic

Our working group researches and develops functional inks for applications in printed electronics, sensor technology and the integration of electronics in textiles (smart textiles). We also use alternative, very fast and selective laser-sintering methods. These materials and technologies can be used to implement concepts based on polymer film, paper, textile and flexible thin ceramics (ZrO2 or Spinel) or thin glass.

© Fraunhofer IKTS
Digital inkjet printed temperature sensor on PET.
© Fraunhofer IKTS
Printed LED contact on textile.
© Fraunhofer IKTS
Printed circuit on PET.
© Fraunhofer IKTS
IKTS silver ink on paper.
© Fraunhofer IKTS
IKTS platinum electrodes in spinel ceramic.

Service offered

 

Ink compatibility with various substrates

 

IKTS develops a range of printable inks, which are compatible to various substrates from polymers to ceramics.

Temperature range of material inks.

Temperature Range Substrate for application
Low < 150 °C Polymers like PET, PVC, PTFE, PI, PEEK, LCP or paper
Medium
150 to 350 °C Thin glass and metals
High > 350 °C Ceramics, co-firing multi-layer ceramics
© Fraunhofer IKTS
IKTS nanoparticle synthesis.
© Fraunhofer IKTS
Noble metal inks with flexibility in annealing temperatures.

Material spectra

 

The inks are adjusted to the printing requirements of digital inkjet (piezo DoD) or aerosol jet printing. Furthermore, the developed materials can be used in screen printing paste formulations. The particles in the inks are self-synthesized or commercial powders. IKTS develops new ink formulations based on customers requirements and within joined research projects. Examples are:

  • Noble metal inks of Ag, Au, Pt and Pd
  • Metal inks of Cu, Ni and Si
  • Resistor and composite inks (e.g. Ag-glass, RuO2-glass)
  • Carbon inks
  • Flexible polymer-metal composites
  • Special inks based on customer requirements
© Fraunhofer IKTS
Sintered IKTS silver ink on PET foil.
© Fraunhofer IKTS
Sintered IKTS silver ink on PET foil.

Printing equipment

 

For joined research projects we over a wide range of modern printing equipment:

  • Inkjet printer with Dimatix printheads DMP class (up to 20x20 cm2 print size)
  • Aerosol jet printer M3D from Optomec Inc. (up to 20x20 cm2 print size)
  • Screen printers from EKRA semi- and fully automatic E5, X5, HX2 (up to 25x25 cm2 print size)
© Fraunhofer IKTS
Inkjet printing equipment.
© Fraunhofer IKTS
Aerosol jet printing equipment.
© Fraunhofer IKTS
Screen printing equipment.
© Fraunhofer IKTS
Screen printing equipment.

Technologies for functionalization

 

The curing or sintering of printed films can be realized by various technologies. IKTS evaluates and develops new applications on the basis of rapid annealing methods in cooperation with leading engineering companies. These technologies have a high potential for the roll-to-roll (R2R) production of printed electronics.

  • Continuous line laser annealing (HDPL)
  • Flash lamp annealing (FLA)
  • Electron beam annealing
© Fraunhofer IKTS
Line laser for a rapid and selective sintering of printed structures on thermal sensitive substrates (working width 30 mm).
© Fraunhofer IKTS
Line laser for a rapid and selective sintering of printed structures on thermal sensitive substrates (working width 30 mm).
© Fraunhofer IKTS
Inkjet printed and electron conductive Cu metallization on PET after rapid laser annealing.
© Fraunhofer IKTS
Inkjet printed and electron conductive Cu metallization on PET after rapid laser annealing.

Targeting technical challenges of printed films

 

Due to our comprehensive approach of research and development of material inks in combination with the printing and annealing technology, we can solve typical technical challenges of printed electronics:

  • Film thickness (range 0.1 to 100 µm)
  • Adhesion
  • Substrate pre-treatment
  • Conductivity, Resistivity
  • Quality of the print layout (e.g. fine line or miniaturized printing)
  • Film aspect ratio
  • Scalability for commercial application
  • Individual adjustment of print formulations / inks

We organize consortia and we participate in national and European research projects. Furthermore, we perform feasibility studies for customers. On the basis of our network we bring partners from research and industry together.

Publications based on IKTS-inks:

2023

[57] M. Fritsch, K. Hariharan, F. Stracke, M. Vinnichenko, I. Meiser, S. Mosch, J.C. Neubauer, R. Ruff, R. Le Harzic, S. Wagner, T. Knoll “HeartBeat - Inkjet printed platform on polymer foil for the functional monitoring of cardiomyocyte cells”, presentation held at Large-area, Organic and Printed Electronics Convention – LOPEC Congress, 02.03.2023.

2022

[56] M. H. Fakhr, N. Beshchasna, S. Balakin, I. Lopez Carrasco, A. Heitbrink, F. Göhler, N. Rösch, J. Opitz “Cleaning of LTCC, PEN, and PCB Au electrodes towards reliable electrochemical measurements”, Scientific Reports, 2022, 12:20431. Doi.org/10.1038/s41598-022-23395-3.

[55] Fabian Loepthien “Benetzungsverhalten von Silber- und Goldnanotinten auf Polymersubstraten : Einfluss des Benetzungsverhaltens auf die Qualität und Schichthaftung Inkjet gedruckter Leitbahnen”, Fraunhofer IKTS / TU Dresden. Diploma Thesis, Dresden Germany, 2022.

[54] E. S. Oliveros-Mata, C. Voigt, G. S. Cañón Bermúdez, Y. Zabila, N. M. Valdez-Garduño, M. Fritsch, S. Mosch, M. Kusnezoff, J. Fassbender, M. Vinnichenko and D. Makarov “Dispenser Printed Bismuth-Based Magnetic Field Sensors with Non-Saturating Large Magnetoresistance for Touchless Interactive Surfaces”, Adv. Mater. Technol. 2022, 7, 2200227, Doi.org/10.1002/admt.202200227.

[53] M. A. U. Khalid, K. Hwan Kim, A. R. C. Salih, K. Hyun, S. Hyuk Park, B. Kang, A. M. Soomro, M. Ali, Y. Jun, D. Huh, H. Cho and K. Hyun Choi “High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip”, Lab Chip, 2022, 22, 1764. DOI: 10.1039/d1lc01079d.

2021

[52] Moritz Fritz Langer “Printing and photonic post-processing of soft-magnetic structures combined with electrical conductors”, KU Leuven / Fraunhofer IKTS / TU Dresden. Master Thesis, 2021.

[51] H. M. U. Farooqi, B. Kang, M. A. U. Khalid, A. R. C. Salih K. Hyun, S. Hyuk Park, D. Huh and K. Hyun Choi “Real‑time monitoring of liver fibrosis through embedded sensors in a microphysiological system”, Nano Convergence (2021) 8:3. Doi.org/10.1186/s40580-021-00253-y.

[50] N. Samotaev, K. Oblov, P. Dzhumaev, M. Fritsch, M., S. Mosch, M. Vinnichenko, N. Trofimenko, C. Baumgärtner, F.-M. Fuchs, L. Wissmeier “Combination of Ceramic Laser Micromachining and Printed Technology as a Way for Rapid Prototyping Semiconductor Gas Sensors”, Micromachines 2021, 12, 1440. DOI: 10.3390/mi12121440.

[49] M. Fritsch, A. Kabla, R. Zichner, D. Mitra, N. Shaly, S. Kapadia, L. Wissmeier,N. Samotaev “Digital Manufacturing Technologies for the Development of Smart Sensors and Electronics for Agro-Industrial Systems”, Research and development report of the MANUNET ERA-NET collaboration project „DigiMan“, 28.04.2021. http://publica.fraunhofer.de/dokumente/N-634398.html. DOI: 10.24406/ikts-n-634398.

[48] L. Petani, V. Wehrheim, L. Koker, M. Reischl, M. Ungerer, U. Gengenbach and C. Pylatiuk ”Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy”, Flexible and Printed Electronics, Volume 6, Number 4, 2021. DOI: 10.1088/2058-8585/ac32ab.

[47] M. Zea, R. Texidó, R. Villa, S. Borrós, G. Gabriel “Specially Designed Polyaniline/Polypyrrole Ink for a Fully Printed Highly Sensitive pH Microsensor”, ACS Appl Mater Interfaces.; 13(28), pp.33524-33535, 2021. DOI: 10.1021/acsami.1c08043.

[46] P. Kuberský, J. Navrátil, T. Syrový, P. Sedlák, S. Nešpurek, A. Hamácek “An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid”, Sensors, 21, 711, 2021. DOI: 10.3390/s21030711.

2020

[45] M. Fritsch, S. Mosch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff, F.-M. Fuchs, L. Wissmeier, N. Samotaev, M. Etrekova, D. Filipchuk “Printed Miniaturized Platinum Heater on Ultra-Thin Ceramic Membrane for MOX Gas Sensors”, International Youth Conference on Electronics, Telecommunications and Information Technologies, 2020-11-28, Vol.255, p.97-103, Springer International Publishing, DOI: 10.1007/978-3-030-58868-7_11.

[44] M. Fritsch, S. Mosch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff, F.M. Fuchs, L. Wissmeier, N. Samotaev, K. Oblov “Printed Miniaturized Platinum Heater on Ultra-Thin Ceramic Membrane for Mox Gas Sensors” ECS Meeting Abstracts, Vol. MA2020-01, IMCS 03: Electrochemical and Metal Oxide Sensors, 2020. DOI: 10.1149/MA2020-01282125mtgabs.

[43] N. Samotaev, K. Oblov, A. Gorshkova, M. Fritsch, S. Mosch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff, F.-M. Fuchs, L. Wissmeier “Ceramic microhotplates for low power metal oxide gas sensors”, Materials Today: Proceedings, Volume 30, Part 3, Pages 448-451, 2020. DOI: 10.1016/j.matpr.2019.12.394.

[42] M. Avraham, S. Stolyarova, T. Blank, S. Bar‐Lev, G. Golan, Y. Nemirovsky “A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 2: Emphasis on Physical Aspects” Micromachines 11(6), pp.587, 2020. DOI: 10.3390/mi11060587.

[41] D. Shlenkevitch, S. Stolyarova, T. Blank, I. Brouk, Y. Nemirovsky “Novel Miniature and Selective Combustion-Type CMOS Gas Sensor for Gas-Mixture Analysis—Part 1: Emphasis on Chemical Aspects” Micromachines 11(4), pp. 345, 2020. DOI: 10.3390/mi11040345.

2019

[40] S. Demuru, A. Marette, W. Kooli, P. Junier and D. Briand, "Flexible Organic Electrochemical Transistor with Functionalized Inkjet-Printed Gold Gate for Bacteria Sensing," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019, pp. 2519-2522, DOI: 10.1109/TRANSDUCERS.2019.8808309.

[39] B. Cruz, A. Albrecht, P. Eschlwech, E. Biebl „Inkjet printing of metal nanoparticles for green UHF RFID tags“ Adv. Radio Sci., 17, 119–127, 2019. DOI: 10.5194/ars-17-119-2019.

[38] S. Khan and D. Briand “All-printed low-power metal oxide gas sensors on polymeric substrates”, Flex. Print. Electron. 4, 015002, 2019. DOI: doi.org/10.1088/2058-8585/aaf848

[37] N. Samotaev, K. Oblov, A. Gorshkova, M. Fritsch, S. Mosch, F.M. Fuchs, L. Wissmeier, M. Vinnichenko, N. Trofimenko, M. Kusnezoff „Ceramic microhotplates for low power metal oxide gas sensors“, International Scientific Conference “Materials Science: Composites, Alloys and Materials Chemistry” (MS-CAMC), St. Petersburg Russia, 20.-21.11.2019.

[36] S. Kapadia, M. Fritsch, A. Kabla, F.M. Fuchs, E. Bilbao, L. Monsalve, J. Fossati, K.Y. Mitra, A. Trul, E. Agina, S. Ponomarenko „The development & fabrication of the all inkjet printed electronic devices using novel functional materials suitable for various sensing applications in the field of printed and flexible electronic“, Printing for Fabrication conference, San Francisco USA, 29.09-03.10.2019.

[35] N. Samotaev, K. Oblov, A. Ivanova, A. Gorshkova, B. Podlepetsky „Rapid Prototyping of MOX Gas Sensors in Form-factor of SMD Packages“, 31st International Conference on Microelectronics (MIEL), Nis Serbia, 16.-18.09.2019.

[34] M. Fritsch, S. Mosch, N. Trofimenko, V. Sauchuk, M. Vinnichenko, M. Kusnezoff, N.  Beshchasna, M.S. Draz “Material inks for inkjet printed biomedical sensor applications“,30th Annual Conference of the European Society for Biomaterials (ESB), Dresden Germany, 09.-13.09.2019. DOI 10.5162/14dss2019/5.4. Available from https://www.ama-science.org/proceedings.

 

 

 

[33] M. Fritsch, S. Mosch, N. Trofimenko, M. Vinnichenko, M. Kusnezoff „Platinum Nanoinks for Inkjet printed Sensors“, Printed Electronics Konferenz und Messe 2019, IDTechEx Berlin Germany, 10.-11.04.2019.

[32] M. Zea, A. Moya, M. Fritsch, E. Roman, R. Villa, G. Gabriel “Enhanced performance stability of iridium oxide based pH sensors fabricated on rough inkjet-printed platinum”, Journal of Applied Materials and Interfaces, 11, 16, pp.15160-15169. 2019. DOI: doi.org/10.1021/acsami.9b03085

 

2018

[31] Andreas Albrecht “Printed Sensors for the Internet of Things”, Dissertation Thesis, Technische Universität München, Germany, 2018.

[30] S. Khan, T.P. Nguyen, M. Lubej, L. Thiery, P. Vairac, D. Briand “Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes” Microelectronic Engineering, 194, pp.71–78, 2018. DOI: doi.org/10.1016/j.mee.2018.03.013.

[29] A. Moya, M. Ortega-Ribera, X. Guimerà, E. Sowade, M. Zea, X. Illa, E. Ramon, R. Villa, J. Gracia-Sancho, G. Gabriel “Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system” Lab Chip, 18, pp.2023–2035, 2018. DOI: 10.1039/c8lc00456k.

[28] M. Vinnichenko, M. Fritsch, X. Junchen; D. Makarov, T. Voitsekhivska, V. Sauchuk, M. Kusnezoff “Flexible High-Performance Metallic Interconnects Prepared by Innovative Diode Laser Array Treatment of Inkjet-Printed Layers” Society for Imaging Science and Technology -IS&T-: Printing for Fabrication 2018: Materials, Applications and Processes, 34th International Conference on Digital Printing Technologies (NIP), September 23-27, 2018, Dresden, Germany; Technical Program, Abstracts, and USB Proceedings. Springfield/Va.: IS&T, pp. XIV, 2018.

[27] M. Schubert, Y. Wang, M. Fritsch, M. Vinnichenko, L. Rebohle, T. Schumann, K. Bock „Evaluation of Nanoparticle Inks on Flexible and Stretchable Substrates for Biocompatible Application”, 7th Electronic System-Integration Technology Conference (ESTC) 2018, 18-21.September 2018 Dresden, proceeding in press, IEEE, 2018. DOI: 10.1109/ESTC.2018.8546494.

[26] M. Vinnichenko, D. Makarov, M. Fritsch, T. Voitsekhivska, V. Sauchuk, M. Kusnezoff “Realizing Flexible High-Performance Silver Interconnects on Thin and Ultrathin Substrates by Inkjet-Printing and Innovative Laser Treatment” 14th International Conference on Modern Materials and Technologies (CIMTEC), 04-14.06.2018, Perugia Italy, 2018.

[25] M. Vinnichenko, M. Fritsch, D. Makarov, N. Trofimenko, V. Sauchuk, M. Kusnezoff “Innovative laser processing of inkjet-printed layers” Printed Electronics Europe 2018, IDTechEx, 11.-12.4.2018, Berlin Germany, 2018.

[24] M. Fritsch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff „Metal nanoinks for inkjet printed interconnects on flexible substrates“ LOPE-C 2018, Munich Germany, 14.03.2018, 2018.

 

2017

[23] J. Stulik and A. Hamacek “Carbon Nanotubes Ammonia Sensor Printed by Aerosol Jet System” 1st PCNS Passive Components Networking Days, 12-15th Sep 2017, Brno, Czech Republic, paper 4.5.  New Development Session, PCNS2017 Proceedings pp.91-94. ISBN: 978-80-905 768-8-9.

[22] A. Habermehl, R. Eckstein, N. Strobel, N. Bolse, G. Hernandez.Sosa, A. Mertens, C. Eschenbaum, U. Lemmer „Microfluidic surface-enhanced Raman analysis systems by aerosol jet printing“ IEEE Sensors, Glasgow, United Kingdom, 2017. DOI: 10.1109/ICSENS.2017.8234346.

[21] A. Habermehl, N. Strobel, R. Eckstein, N. Bolse, A. Mertens, G. Hernandez-Sosa, C. Eschenbaum, U. Lemmer „Lab-on-Chip, Surface-Enhanced Raman Analysis by

Aerosol Jet Printing and Roll-to-Roll Hot Embossing” Sensors, 17 (10), 2401, 2017. DOI:10.3390/s17102401.

[20] A. Moya, M. Zea, E. Sowade, R. Vila, E. Ramon, R.R. Baumann, G. Gabriel “Inkjet-printed dissolved oxygen and pH sensors on flexible plastic substrates” Proceedings of SPIE

Vol. 10246, 102460F, 2017, DOI: 10.1117/12.2264912.

[19] M. Fritsch, M. Vinnichenko, D. Makarov, T. Voitsekhivska, M. Kusnezoff “High-performance silver interconnects prepared on thin and ultrathin flexible substrates by inkjet-printing and laser treatment” Pro Flex 2017 conference, Dresden 27.11.2017, 2017.

[18] M. Fritsch, N. Trofimenko, M. Vinnichenko, V. Sauchuk “Synthesis, formulation and rapid curing of particles based inkjet and aerosoljet printed films for electronic and sensory devices” Poster presented at Printed and Flexible Electronics Congress, London 21.-22.2.2017, 2017.

 

2016

[17] E. Sowade “Inkjet printing of photonic structures and thin-film transistors based

on evaporation-driven material transportation and self-assembly” Dissertation Thesis, Technische Universität Chemnitz, Germany, 2016.

[16] M. Fritsch, “Synthesis of particles inks for inkjet printing of microelectronic components” TheICJ 3rd Annual InkJet Conference 2016, Düsseldorf 4.6.10.2016, 2016.

[15] M. Fritsch, M. Vinnichenko “Synthesis And Formulation Of Particle Inks For Inkjet And Aerosol-Jet Printing Methods”, Printed Electronics Europe, New Material – New Possibilities, Berlin April 28, 2016.

[14] A. Moya, E. Sowade, F. J. del Campo, K. Y. Mitra, E. Ramon, R. Villa, R. R. Baumann, G. Gabriel „All-inkjet-printed dissolved oxygen sensors on flexible plastic substrates“, Organic Electronics 39, pp.168-176, 2016, DOI 10.1016/j.orgel.2016.10.002.

[13] M. Zea “Platinum microelectrodes fabricated on flexible substrate by inkjet Printing for pH sensing”, Master’s Thesis, Universitat Autònoma de Barcelona (UAB), 2016.

[12] M. Fritsch, V. Sauchuk, N. Trofimenko, M. Vinnichenko “Synthesis, formulation and rapidcuring of particles based inkjet and aerosoljetprinted films for electronic and sensory devices” Poster presented at 2016 MRS Fall Meeting & Exhibit, Boston 27.11-02.12.2016, 2016.

[11] M. Vinnichenko, V. Sauchuk, M. Fritsch, D. Hauschild; N. Trofimenko, M. Kusnezoff “Millisecond laser functionalization of the structures prepared using wet chemical deposition”, 2016 MRS Fall Meeting & Exhibit, Boston 27.11-02.12.2016, 2016.

 

2015

[10] R. Jurk, M. Fritsch, M. Eberstein, J. Schilm, F. Uhlig, A. Waltinger, A. Michaelis „Ink jet printable silver metallization with zinc oxide for front side metallization for micro crystalline silicon solar cells”, J. Micromech. Microeng. 25, No.12, Art.125021, 7 pp., ISSN: 0960-1317, 2015, DOI: 10.1088/0960-1317/25/12/125021.

[9] R. Soukup, J. Navratil, J. Reboun, T. Rericha “A Comparison of the Interdigital Electrodes Prepared by Aerosol Jet Printing and Lift–Off Technique”, 38th Int. Spring Seminar on Electronics Technology, ISBN 978-1-4799-8860-0, IEEE pp. 30-35, 2015, DOI 10.1109/ISSE.2015.7247956.

[8] S. Hildebrandt, I. Kinski, S. Mosch, A. Waltinger, F. Uhlig, A. Michaelis “Non-contact printing: conductive track geometry affected by ink rheology and composition”, Microsystem Technologies 21, No.6, ISSN: 0946-7076, pp.1363-1369., 2015, DOI 10.1007/s00542-014-2275-8.

 

2014

[7] R. Jurk, S.Mosch, M.Fritsch, M.Ihle “Synthesis of nano metal particles for low sintering conductive inks”, Fraunhofer Direct Digital Manufacturing Conference 2014 - DDMC, Berlin (12./13.3.2014), E-ISBN: 978-3-8396-9128-1 , pp.269-273, 2014, DOI 10.13140/2.1.5044.5766.

[6] M. Eberstein, U. Schmidt, S. Komer, K. Reinhardt, R. Jurk, U. Partsch „In-situ Observations of Glass Frit Related Effects during the Front Side Paste Contact Formation”, Conference: Photovoltaic Specialist Conference (PVSC), ISBN 978-1·4799-4398-2, IEEE, pp. 3463-3469, 2014, DOI: 10.13140/2.1.3068.2567.

[5] N. Trofimenko, S. Mosch, M. Fritsch, R. Jurk, M. Ihle “Metal Nano-inks: From Synthesis to application“, Coating International, 9, pp.16-17, 2014.

 

2013

[4] K. Swiecinski, M. Ihle, R. Jurk, E. Dietzen, U. Partsch, M. Eberstein “Aerosol jet printing of two component thick film resistors on LTCC”, Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT): September 2013, Vol. 2013, No. CICMT, pp. 000240-000246, DOI 10.4071/CICMT-THA25.

[3] M. Neubert, S. Cornelius, J. Fiedler, T. Gebel, H. Liepack, A. Kolitsch, and M. Vinnichenko: Overcoming challenges to the formation of high-quality polycrystalline TiO2: Ta transparent conducting films by magnetron sputtering. J. Appl. Phys. 114, 083707, 2013, DOI 10.1063/1.4819088.

 

Before 2012

[2] M. Fritsch and R. Jurk, “Method for producing nanoparticles from a noble metal and use of the nanoparticles thus produced”, patent application (WO2012/016565A2 and US2013/0205950A1), description of the synthesis of nanoparticles and ink formulation, 2012.

[1] M. Fritsch et al. ”Ink jet printing of fine line metallization with particle Ag inks”, Journal of microelectronics and electronic packaging, IMAPS/ACerS 6th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT, 18.-21.04.2010), Chiba, Japan, 2010.