Functional inks for applications in printed electronics and sensor technology using microprinting processes such as inkjet, aerosol, screen and dispenser printing


Our working group researches and develops functional inks and pastes for applications in printed electronics and sensor technology as well as for their integration in flexible and portable applications. The areas of application are diverse. They range from the production of components for gas sensors with miniaturised heaters and highly sensitive measuring electrodes for biomedical sensors to catalytically improved infiltrations or printing of electrodes for fuel cells and printed silicon layers for photovoltaics and lithium-ion batteries.

We utilise modern methods and equipment such as nanotechnology, microprinting processes, molecular plasma treatment and laser sintering. The range of substrate materials that can be used is very broad and includes paper, polymer films, textiles, metals, ceramics and glass.

The direct printing approach offers decisive advantages:

  • Cost and time savings: The printing processes used, such as inkjet, aerosol jet, screen printing and dispensers, avoid complex thin-film processes and reduce material consumption.
  • Flexibility and fast prototyping: Prototypes of printed electrodes can be produced quickly and improved iteratively using printing processes.
  • Customisability through digital printing: Inkjet in particular enables easy adaptation of the print geometries using software in order to meet the requirements of different applications (e.g. sensor layouts).
  • Scalability: The technological approach offers high scalability so that large quantities of printed parts can be produced cost-effectively and in a short time (roll-to-roll production).
© Fraunhofer IKTS
Inkjet printed silver ink on PET film.
© Fraunhofer IKTS
Inkjet printed LED contacting on textile.
© Fraunhofer IKTS
Inkjet printed biocompatible gold electrodes on PEN film for monitoring heart muscle cell cultures.
© Fraunhofer IKTS
IKTS silver ink on paper.
© Fraunhofer IKTS
IKTS platinum electrodes in spinel ceramic.

Service offered


Ink compatibility with various substrates


IKTS develops a range of printable inks, which are compatible to various substrates from polymers to ceramics.

Temperature range of material inks.

Temperature Range Substrate for application
Low < 150 °C Polymers like PET, PVC, PTFE, PI, PEEK, LCP or paper
150 to 350 °C Thin glass and metals
High > 350 °C Ceramics, co-firing multi-layer ceramics
© Fraunhofer IKTS
IKTS nanoparticle synthesis.
© Fraunhofer IKTS
Noble metal inks with flexibility in annealing temperatures.

Material spectrum


The functional inks and pastes are specially adapted to the respective printing process. They are based either on nanoparticles, which are produced in-house, or on commercial powders. IKTS also develops customised printing formulations on customer request or in joint research projects. The range of materials is broad and includes:

  • Nano inks made of Au and Pt for electrodes and sensor layers. The gold and platinum inks have been successfully tested several times in the form of printed electrodes for biocompatibility in accordance with DIN EN ISO 10993-5 / -12
    Innovative solutions for printed electronics and biocompatible electrodes
  • Metal inks such as Ag, Cu, Ni and Si are suitable as materials for electrical cables or energy storage devices.
  • Carbon inks such as graphite, graphene and CNTs can be used as more cost-effective and alternative electrode materials.
  • Magnetic inks such as Fe-Ni are suitable for printed magnetic sensors.
  • Marking inks based on ceramic colour bodies and glass with a temperature stability of 500 °C to 1300 °C are used for permanent marking and digital traceability of metallic or ceramic components using printed data matrix codes when other marking solutions such as laser marking or engraving are not an option.
  • Resistance and composite inks (e.g. Ag glass, RuO2 glass)
  • Special inks on customer request
© Fraunhofer IKTS
Sintered IKTS silver ink on PET foil.
© Fraunhofer IKTS
Sintered IKTS silver ink on PET foil.

Example of nano inks for microprinting processes


Electronically conductive nano inks are examples of our ink formulations for inkjet and aerosol printing processes. They are based on self-synthesised nanoparticles that are stably dispersed in the solvent. These inks have been developed for the digital and high-resolution printing of electronically conductive tracks or electrodes for a wide variety of substrate materials. The formulations are compatible with polymer or paper substrates through to ceramic and glass substrates. Our silver ink, for example, is electrically conductive at temperatures as low as 100 °C. Our inks are used in product development for biomedical sensors, printed circuit carriers and various functional elements in printed electronics and sensor technology.

© Fraunhofer IKTS
IKTS nanoparticles for printing.
© Fraunhofer IKTS
Electronic sheet resistance of IKTS Au, Pt and Ag inks.

Printing equipment


We utilise various printing technologies for joint research projects:

  • Inkjet printing
    o   Dimatix DMP SAMBA (up tp 21x32 cm2 print size),
    o   Pixdro LP50 (up to 23x33 cm2 print size) and
    o   Ceradrop F-Series (up to 31x31 cm2 print size) with Fujifilm and Konica Minolta printheads
  • Aerosol-printer M3D from Optomec Inc. (up to 20x20 cm2 print size)
  • Screen printers from EKRA semi and fully automatic E5, X5, HX2 (up to 25x25 cm2 print size)
© Fraunhofer IKTS
Inkjet printing equipment.
© Fraunhofer IKTS
Aerosol jet printing equipment.
© Fraunhofer IKTS
Screen printing equipment.

Functionalisation technologies


In addition to the formulation of inks and pastes, IKTS has modern systems for substrate pre-treatment based on molecular plasma. This can further improve the wetting and adhesion of the print layers on a wide variety of substrate surfaces. After printing, the layers undergo thermal treatment, which is the only way to realise the function of the printed layer (e.g. electrically conductive, semi-conductive or formation of catalytic nanophases). A variety of sintering furnaces are available for this purpose, as well as fast photonic sintering processes such as lasers or flash lamps. This means that printed layers can also be processed on thermally sensitive substrates.

  • Molecular plasma system for pre-treatment of the substrate surface of MPG (up to 21x30 cm2 surface size)
  • Continuous line laser treatment (HDPL, 30 mm scan width)
  • Flash lamp process from Novacentrix (FLA)
  • UV and IR curing
© Fraunhofer IKTS
Molecular plasma system for pre-treatment of substrate surface.
© Fraunhofer IKTS
Line laser for fast and selective sintering of printed structures on thermally sensitive substrates.
© Fraunhofer IKTS
Gas sensor with inkjet printed platinum heater on 20 µm thin LTCC ceramic at 500 °C operating temperature and < 200 mW power consumption.
© Fraunhofer IKTS
Inkjet printable silicon particle ink for PV and LiB applications.

Our answer to the technical challenges of printed layers


Thanks to our extensive experience in the research and development of functional materials in combination with various printing technologies and heat treatment processes, we are able to address common technological problems in printed electronics and sensor technology:

  • Coating thickness range from 0.1 to 100 µm
  • Adhesion even on challenging substrate surfaces thanks to ink chemistry and substrate pre-treatment
  • Adjustment of electrical conductivities and target resistances
  • Print quality (e.g. fine line printing, miniaturisation)
  • Aspect ratio of the print layer
  • Scaling the technology for commercial applications
  • Customisation of printing materials
  • Extensive scientific equipment in the field of chemical, thermal, mechanical and microstructure characterisation

We organise consortia and participate as project partners in national and European research projects. We also carry out feasibility studies for customers. Thanks to our network, we can bring together partners from research and industry.

Publications of research work by our customers and the IKTS working group (highlighted) based on our ink development:


[70] P. Bischoff, A. V. Carreiro, C. Schuster and T. Härtling “Quantifying the Displacement of Data Matrix Code Modules: A Comparative Study of Different Approximation Approaches for Predictive Maintenance of Drop-on-Demand Printing Systems”, J. Imaging 9, 125, 2023. DOI 103390/jimaging9070125.

[69] A. Arché-Núñez, P. Krebsbach, B. Levit, D. Possti, A. Gerston, T. Knoll, T. Velten, C. Bar-Haim, S. Oz, S. Klorfeld-Auslender, G. Hernandez-Sosa, A. Mirelman and Y. Hanein “Bio-potential noise of dry printed electrodes: physiology versus the skin-electrode impedance”, Physiol. Meas. 44, 095006., 2023. DOI 10.1088/1361-6579/acf2e7.

[68] E. Hollinger, M. Fritsch, S. Mosch, N. Trofimenko “Ultrasonic-assisted synthesis of gold nanoparticles for inkjet inks”, Poster presented at Large-area, Organic & Printed Electronics Convention - LOPEC 2023, München Germany (1.-2.3.2023).

[67] Boris Goikhman, Moshe Avraham, Sharon Bar-Lev, Sara Stolyarova, Tanya Blank and Yael Nemirovsky “A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 3: Extending the Chemical Modeling”, Micromachines, 14, 270, 2023. DOI: 10.3390/mi14020270.

[66] S. Jungginger “Benetzungsverhalten in Zusammenhang mit der Polarität und Bestimmung der Latenzzeit von Goldtintenvariationen gedruckt mit dem Dimatix DMP Samba Inkjet-Druckkopf”, Bachelorarbeit 03.04.2023, Hochschule für Technik, Wirtschaft und Kultur Leipzig, Fakultät Informatik und Medien, Studiengang Digitale Print-Technologien.

[65] M. Fritsch, K. Hariharan, F. Stracke, M. Vinnichenko, I. Meiser, S. Mosch, J.C. Neubauer, R. Ruff, R. Le Harzic, S. Wagner, T. Knoll “HeartBeat - Inkjet printed platform on polymer foil for the functional monitoring of cardiomyocyte cells”, presentation held at Large-area, Organic and Printed Electronics Convention – LOPEC Congress, Munich Germany 02.03.2023.



[64] P. Bischoff, A. V. Carreiro, C. Kroh, C. Schuster and T. Härtling “En route to automated maintenance of industrial printing systems: digital quantification of print-quality factors based on induced printing failure”, Journal of Sensors and Sensor Systems, Volume 11 (2), pp.277–285, 2022. DOI 10.5194/jsss-11-277-2022.

[63] M. Fritsch, S. Mosch, M. Vinnichenko, M. Kusnezoff, Z. Kiaee and R. Keding “Inkjet printable boron-doped silicon particle ink”, poster presented at Freiberg Silicon Days, Freiberg Germany (9.-10.06.2022).

[62] E. S. Oliveros-Mata, C. Voigt, S. G. Santiago Cañón-Bermúdez, Y. Zabila, G. Valdez Garduño, M. Nestor, M. Fritsch, S. Mosch, M. Kusnezoff, J. Fassbender, M. Vinnichenko, and D. Makarov “Dispenser Printed Bismuth‐Based Magnetic Field Sensors with Non‐Saturating Large Magnetoresistance for Touchless Interactive Surfaces”, Advanced Materials Technologies by A. DeMello [ed.] (ETH Zürich) J. Rogers [ed.] (Northwestern University) Z. L. Wang [ed.] (School of Materials Science and Engineering). - Hoboken, NJ: Wiley. - 2365-709X (E-ISSN), 2022.

[61] M. H. Fakhr, N. Beshchasna, S. Balakin, I. Lopez Carrasco, A. Heitbrink, F. Göhler, N. Rösch, J. Opitz “Cleaning of LTCC, PEN, and PCB Au electrodes towards reliable electrochemical measurements”, Scientific Reports, 12:20431, 2022.

[60] Fabian Loepthien “Benetzungsverhalten von Silber- und Goldnanotinten auf Polymersubstraten : Einfluss des Benetzungsverhaltens auf die Qualität und Schichthaftung Inkjet gedruckter Leitbahnen”, Fraunhofer IKTS / TU Dresden. Diploma Thesis, Dresden Germany, 2022.

[59] E. S. Oliveros-Mata, C. Voigt, G. S. Cañón Bermúdez, Y. Zabila, N. M. Valdez-Garduño, M. Fritsch, S. Mosch, M. Kusnezoff, J. Fassbender, M. Vinnichenko and D. Makarov “Dispenser Printed Bismuth-Based Magnetic Field Sensors with Non-Saturating Large Magnetoresistance for Touchless Interactive Surfaces”, Adv. Mater. Technol. 2022, 7, 2200227,

[58] M. A. U. Khalid, K. Hwan Kim, A. R. C. Salih, K. Hyun, S. Hyuk Park, B. Kang, A. M. Soomro, M. Ali, Y. Jun, D. Huh, H. Cho and K. Hyun Choi “High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip”, Lab Chip, 22, 1764, 2022. DOI: 10.1039/d1lc01079d.



[57] T. Velten, H. Schuck, T. Knoll, S. Wagner, D. Volk, Y. Hanein, T. Hendler, M. Farah and L. Asfour “Nano-based portable electronics for the diagnosis of mental disorders and functional restoration, production technologies and devices”, Results of the German-Israeli collaborative project NanoEDGE, Publisher Fraunhofer IBMT Sulzbach Germany, 2021. DOI: 10.24406/publica-fhg-301341.

[56] Moritz Fritz Langer “Printing and photonic post-processing of soft-magnetic structures combined with electrical conductors”, KU Leuven / Fraunhofer IKTS / TU Dresden. Master Thesis, 2021.

[55] H. M. U. Farooqi, B. Kang, M. A. U. Khalid, A. R. C. Salih K. Hyun, S. Hyuk Park, D. Huh and K. Hyun Choi “Real‑time monitoring of liver fibrosis through embedded sensors in a microphysiological system”, Nano Convergence 8:3, 2021.

[54] N. Samotaev, K. Oblov, P. Dzhumaev, M. Fritsch, M., S. Mosch, M. Vinnichenko, N. Trofimenko, C. Baumgärtner, F.-M. Fuchs, L. Wissmeier “Combination of Ceramic Laser Micromachining and Printed Technology as a Way for Rapid Prototyping Semiconductor Gas Sensors”, Micromachines, 12, 1440, 2021. DOI: 10.3390/mi12121440.

[53] M. Fritsch, A. Kabla, R. Zichner, D. Mitra, N. Shaly, S. Kapadia, L. Wissmeier,N. Samotaev “Digital Manufacturing Technologies for the Development of Smart Sensors and Electronics for Agro-Industrial Systems”, Research and development report of the MANUNET ERA-NET collaboration project „DigiMan“, 28.04.2021. DOI: 10.24406/ikts-n-634398.

[52] L. Petani, V. Wehrheim, L. Koker, M. Reischl, M. Ungerer, U. Gengenbach and C. Pylatiuk ”Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy”, Flexible and Printed Electronics, Volume 6, Number 4, 2021. DOI: 10.1088/2058-8585/ac32ab.

[51] M. Zea, R. Texidó, R. Villa, S. Borrós, G. Gabriel “Specially Designed Polyaniline/Polypyrrole Ink for a Fully Printed Highly Sensitive pH Microsensor”, ACS Appl Mater Interfaces.; 13(28), pp.33524-33535, 2021. DOI: 10.1021/acsami.1c08043.

[50] P. Kuberský, J. Navrátil, T. Syrový, P. Sedlák, S. Nešpurek, A. Hamácek “An Electrochemical Amperometric Ethylene Sensor with Solid Polymer Electrolyte Based on Ionic Liquid”, Sensors, 21, 711, 2021. DOI: 10.3390/s21030711.



[49] M. Fritsch, S. Mosch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff, F.-M. Fuchs, L. Wissmeier, N. Samotaev, M. Etrekova, D. Filipchuk “Printed Miniaturized Platinum Heater on Ultra-Thin Ceramic Membrane for MOX Gas Sensors”, International Youth Conference on Electronics, Telecommunications and Information Technologies, 2020-11-28, Vol.255, p.97-103, Springer International Publishing, DOI: 10.1007/978-3-030-58868-7_11.

[48] M. Fritsch, S. Mosch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff, F.M. Fuchs, L. Wissmeier, N. Samotaev, K. Oblov “Printed Miniaturized Platinum Heater on Ultra-Thin Ceramic Membrane for Mox Gas Sensors” ECS Meeting Abstracts, Vol. MA2020-01, IMCS 03: Electrochemical and Metal Oxide Sensors, 2020. DOI: 10.1149/MA2020-01282125mtgabs.

[47] N. Samotaev, K. Oblov, A. Gorshkova, M. Fritsch, S. Mosch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff, F.-M. Fuchs, L. Wissmeier “Ceramic microhotplates for low power metal oxide gas sensors”, Materials Today: Proceedings, Volume 30, Part 3, Pages 448-451, 2020. DOI: 10.1016/j.matpr.2019.12.394.

[46] M. Avraham, S. Stolyarova, T. Blank, S. Bar‐Lev, G. Golan, Y. Nemirovsky “A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 2: Emphasis on

Physical Aspects” Micromachines 11(6), pp.587, 2020. DOI: 10.3390/mi11060587.

[45] D. Shlenkevitch, S. Stolyarova, T. Blank, I. Brouk, Y.i Levi and Y. Nemirovsky “Reducing Food Waste with a Tiny CMOS-MEMS Gas Sensor, Dubbed GMOS”, Eng. Proc., 2, 36, 2020. DOI 10.3390/ecsa-7-08190.

[44] D. Shlenkevitch, S. Stolyarova, T. Blank, I. Brouk, Y. Nemirovsky “Novel Miniature and Selective Combustion-Type CMOS Gas Sensor for Gas-Mixture Analysis—Part 1: Emphasis on Chemical Aspects” Micromachines 11(4), pp. 345, 2020. DOI: 10.3390/mi11040345.



[43] M. Fritsch, S. Mosch, N. Trofimenko, V. Sauchuk, M. Vinnichenko, M. Kusnezoff, N. Beshchasna, M. Draz, L. Röhmhildt and J. Opitz “Nanotinten für den Inkjet-Druck biomedizinischer Sensorkomponenten”, 14. Dresdner Sensor-Symposium, Dresden (2.-4.12.2019), DOI 10.5162/14dss2019/5.4.

[42] M. Vinnichenko, N. Trofimenko, V. Sauchuk, S. Mosch, M. Fritsch, M. Kusnezoff, J.-I. Mönch, B. Canon, S. Gilbert and D. Makarov “Novel flexible magnetic field sensors prepared by combining screen printing and millisecond diode laser post-processing”, Poster presented at 14. Dresdner Sensor-Symposium, Dresden Germany (2.-4.12.2019).

[41] A. Habermehl “Rolle-zu-Rolle-Herstellung von mikrofluidischen Analysesystemen basierend auf der oberflächenverstärkten Ramanspektroskopie”, PhD-Thesis, KIT Department of Electrical Engineering and Information Technology (ETIT) of Karlsruhe  Institute of Technology (KIT), 18.03.2019.

[40] S. Demuru, A. Marette, W. Kooli, P. Junier and D. Briand, "Flexible Organic Electrochemical Transistor with Functionalized Inkjet-Printed Gold Gate for Bacteria Sensing," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 2519-2522, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808309.

[39] B. Cruz, A. Albrecht, P. Eschlwech, E. Biebl „Inkjet printing of metal nanoparticles for green UHF RFID tags“ Adv. Radio Sci., 17, 119–127, 2019. DOI: 10.5194/ars-17-119-2019.

[38] S. Khan and D. Briand “All-printed low-power metal oxide gas sensors on

polymeric substrates”, Flex. Print. Electron. 4, 015002, 2019. DOI:

[37] N. Samotaev, K. Oblov, A. Gorshkova, M. Fritsch, S. Mosch, F.M. Fuchs, L. Wissmeier, M. Vinnichenko, N. Trofimenko, M. Kusnezoff „Ceramic microhotplates for low power metal oxide gas sensors“, International Scientific Conference “Materials Science: Composites, Alloys and Materials Chemistry” (MS-CAMC), St. Petersburg Russia, 20.-21.11.2019.

[36] S. Kapadia, M. Fritsch, A. Kabla, F.M. Fuchs, E. Bilbao, L. Monsalve, J. Fossati, K.Y. Mitra, A. Trul, E. Agina, S. Ponomarenko „The development & fabrication of the all inkjet printed electronic devices using novel functional materials suitable for various sensing applications in the field of printed and flexible electronic“, Printing for Fabrication conference, San Francisco USA, 29.09-03.10.2019.

[35] N. Samotaev, K. Oblov, A. Ivanova, A. Gorshkova, B. Podlepetsky „Rapid Prototyping of MOX Gas Sensors in Form-factor of SMD Packages“, 31st International Conference

on Microelectronics (MIEL), Nis Serbia, 16.-18.09.2019.

[34] M. Fritsch, S. Mosch, N. Trofimenko, V. Sauchuk, M. Vinnichenko, M. Kusnezoff, N.  Beshchasna, M.S. Draz “Material inks for inkjet printed biomedical sensor applications“,30th Annual Conference of the European Society for Biomaterials (ESB), Dresden Germany, 09.-13.09.2019. DOI 10.5162/14dss2019/5.4. Available from

[33] M. Fritsch, S. Mosch, N. Trofimenko, M. Vinnichenko, M. Kusnezoff „Platinum Nanoinks for Inkjet printed Sensors“, Printed Electronics Konferenz und Messe 2019, IDTechEx Berlin Germany, 10.-11.04.2019.

[32] M. Zea, A. Moya, M. Fritsch, E. Roman, R. Villa, G. Gabriel “Enhanced performance stability of iridium oxide based pH sensors fabricated on rough inkjet-printed platinum”, Journal of Applied Materials and Interfaces, 11, 16, pp.15160-15169. 2019. DOI:



[31] Andreas Albrecht “Printed Sensors for the Internet of Things”, Dissertation Thesis, Technische Universität München, Germany, 2018.

[30] S. Khan, T.P. Nguyen, M. Lubej, L. Thiery, P. Vairac, D. Briand “Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes” Microelectronic Engineering, 194, pp.71–78, 2018. DOI:

[29] A. Moya, M. Ortega-Ribera, X. Guimerà, E. Sowade, M. Zea, X. Illa, E. Ramon, R. Villa, J. Gracia-Sancho, G. Gabriel “Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system” Lab Chip, 18, pp.2023–2035, 2018. DOI: 10.1039/c8lc00456k.

[28] M. Vinnichenko, M. Fritsch, X. Junchen; D. Makarov, T. Voitsekhivska, V. Sauchuk, M. Kusnezoff “Flexible High-Performance Metallic Interconnects Prepared by Innovative Diode Laser Array Treatment of Inkjet-Printed Layers” Society for Imaging Science and Technology -IS&T-: Printing for Fabrication 2018: Materials, Applications and Processes, 34th International Conference on Digital Printing Technologies (NIP), September 23-27, 2018, Dresden, Germany; Technical Program, Abstracts, and USB Proceedings. Springfield/Va.: IS&T, pp. XIV, 2018.

[27] M. Schubert, Y. Wang, M. Fritsch, M. Vinnichenko, L. Rebohle, T. Schumann, K. Bock „Evaluation of Nanoparticle Inks on Flexible and Stretchable Substrates for Biocompatible Application”, 7th Electronic System-Integration Technology Conference (ESTC) 2018, 18-21. September 2018 Dresden, proceeding in press, IEEE, 2018. DOI: 10.1109/ESTC.2018.8546494.

[26] M. Vinnichenko, D. Makarov, M. Fritsch, T. Voitsekhivska, V. Sauchuk, M. Kusnezoff “Realizing Flexible High-Performance Silver Interconnects on Thin and Ultrathin Substrates by Inkjet-Printing and Innovative Laser Treatment” 14th International Conference on Modern Materials and Technologies (CIMTEC), 04-14.06.2018, Perugia Italy, 2018.

[25] M. Vinnichenko, M. Fritsch, D. Makarov, N. Trofimenko, V. Sauchuk, M. Kusnezoff “Innovative laser processing of inkjet-printed layers” Printed Electronics Europe 2018, IDTechEx, 11.-12.4.2018, Berlin Germany, 2018.

[24] M. Fritsch, M. Vinnichenko, N. Trofimenko, M. Kusnezoff „Metal nanoinks for inkjet printed interconnects on flexible substrates“ LOPE-C 2018, Munich Germany, 14.03.2018, 2018.



[23] J. Stulik and A. Hamacek “Carbon Nanotubes Ammonia Sensor Printed by Aerosol Jet System” 1st PCNS Passive Components Networking Days, 12-15th Sep 2017, Brno, Czech Republic, paper 4.5.  New Development Session, PCNS2017 Proceedings pp.91-94. ISBN: 978-80-905 768-8-9.

[22] A. Habermehl, R. Eckstein, N. Strobel, N. Bolse, G. Hernandez.Sosa, A. Mertens, C. Eschenbaum, U. Lemmer „Microfluidic surface-enhanced Raman analysis systems by aerosol jet printing“ IEEE Sensors, Glasgow, United Kingdom, 2017. DOI: 10.1109/ICSENS.2017.8234346.

[21] A. Habermehl, N. Strobel, R. Eckstein, N. Bolse, A. Mertens, G. Hernandez-Sosa, C. Eschenbaum, U. Lemmer „Lab-on-Chip, Surface-Enhanced Raman Analysis by

Aerosol Jet Printing and Roll-to-Roll Hot Embossing” Sensors, 17 (10), 2401, 2017. DOI:10.3390/s17102401.

[20] A. Moya, M. Zea, E. Sowade, R. Vila, E. Ramon, R.R. Baumann, G. Gabriel “Inkjet-printed dissolved oxygen and pH sensors on flexible plastic substrates” Proceedings of SPIE

Vol. 10246, 102460F, 2017, DOI: 10.1117/12.2264912.

[19] M. Fritsch, M. Vinnichenko, D. Makarov, T. Voitsekhivska, M. Kusnezoff “High-performance silver interconnects prepared on thin and ultrathin flexible substrates by inkjet-printing and laser treatment” Pro Flex 2017 conference, Dresden 27.11.2017, 2017.

[18] M. Fritsch, N. Trofimenko, M. Vinnichenko, V. Sauchuk “Synthesis, formulation and rapid curing of particles based inkjet and aerosoljet printed films for electronic and sensory devices” Poster presented at Printed and Flexible Electronics Congress, London 21-22.2.2017, 2017.



[17] E. Sowade “Inkjet printing of photonic structures and thin-film transistors based

on evaporation-driven material transportation and self-assembly” Dissertation Thesis, Technische Universität Chemnitz, Germany, 2016.

[16] M. Fritsch, “Synthesis of particles inks for inkjet printing of microelectronic components” The ICJ 3rd Annual InkJet Conference 2016, Düsseldorf, 2016.

[15] M. Fritsch, M. Vinnichenko “Synthesis And Formulation Of Particle Inks For Inkjet And Aerosol-Jet Printing Methods”, Printed Electronics Europe, New Material – New Possibilities, Berlin April 28, 2016.

[14] A. Moya, E. Sowade, F. J. del Campo, K. Y. Mitra, E. Ramon, R. Villa, R. R. Baumann, G. Gabriel „All-inkjet-printed dissolved oxygen sensors on flexible plastic substrates“, Organic Electronics 39, pp.168-176, 2016, DOI 10.1016/j.orgel.2016.10.002.

[13] M. Zea “Platinum microelectrodes fabricated on flexible substrate by inkjet Printing for pH sensing”, Master’s Thesis, Universitat Autònoma de Barcelona (UAB), 2016.

[12] M. Fritsch, V. Sauchuk, N. Trofimenko, M. Vinnichenko “Synthesis, formulation and rapidcuring of particles based inkjet and aerosoljetprinted films for electronic and sensory devices” Posterpresented at 2016 MRS Fall Meeting & Exhibit, Boston, 2016.

[11] M. Vinnichenko, V. Sauchuk, M. Fritsch, D. Hauschild; N. Trofimenko, M. Kusnezoff “Millisecond laser functionalization of the structures prepared using wet chemical deposition”, 2016 MRS Fall Meeting & Exhibit, Boston, 2016.



[10] R. Jurk, M. Fritsch, M. Eberstein, J. Schilm, F. Uhlig, A. Waltinger, A. Michaelis „Ink jet printable silver metallization with zinc oxide for front side metallization for micro crystalline silicon solar cells”, J. Micromech. Microeng. 25, No.12, Art.125021, 7 pp., ISSN: 0960-1317, 2015, DOI: 10.1088/0960-1317/25/12/125021.

[9] R. Soukup, J. Navratil, J. Reboun, T. Rericha “A Comparison of the Interdigital Electrodes Prepared by Aerosol Jet Printing and Lift–Off Technique”, 38th Int. Spring Seminar on Electronics Technology, ISBN 978-1-4799-8860-0, IEEE pp. 30-35, 2015, DOI 10.1109/ISSE.2015.7247956.

[8] S. Hildebrandt, I. Kinski, S. Mosch, A. Waltinger, F. Uhlig, A. Michaelis “Non-contact printing: conductive track geometry affected by ink rheology and composition”, Microsystem Technologies 21, No.6, ISSN: 0946-7076, pp.1363-1369., 2015, DOI 10.1007/s00542-014-2275-8.



[7] R. Jurk, S.Mosch, M.Fritsch, M.Ihle “Synthesis of nano metal particles for low sintering conductive inks”, Fraunhofer Direct Digital Manufacturing Conference 2014 - DDMC, Berlin (12./13.3.2014), E-ISBN: 978-3-8396-9128-1 , pp.269-273, 2014, DOI 10.13140/2.1.5044.5766.

[6] M. Eberstein, U. Schmidt, S. Komer, K. Reinhardt, R. Jurk, U. Partsch „In-situ Observations of Glass Frit Related Effects during the Front Side Paste Contact Formation”, Conference: Photovoltaic Specialist Conference (PVSC), ISBN 978-1·4799-4398-2, IEEE, pp. 3463-3469, 2014, DOI: 10.13140/2.1.3068.2567.

[5] N. Trofimenko, S. Mosch, M. Fritsch, R. Jurk, M. Ihle “Metal Nano-inks: From Synthesis to application“, Coating International, 9, pp.16-17, 2014.



[4] K. Swiecinski, M. Ihle, R. Jurk, E. Dietzen, U. Partsch, M. Eberstein “Aerosol jet printing of two component thick film resistors on LTCC”, Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT): September 2013, Vol. 2013, No. CICMT, pp. 000240-000246, DOI 10.4071/CICMT-THA25.

[3] M. Neubert, S. Cornelius, J. Fiedler, T. Gebel, H. Liepack, A. Kolitsch, and M. Vinnichenko: Overcoming challenges to the formation of high-quality polycrystalline TiO2: Ta transparent conducting films by magnetron sputtering. J. Appl. Phys. 114, 083707, 2013, DOI 10.1063/1.4819088.


Before 2012

[2] M. Fritsch and R. Jurk, “Method for producing nanoparticles from a noble metal and use of the nanoparticles thus produced”, patent application (WO2012/016565A2 and US2013/0205950A1), description of the synthesis of nanoparticles and ink formulation, 2012.

[1] M. Fritsch et al. ”Ink jet printing of fine line metallization with particle Ag inks”, Journal of microelectronics and electronic packaging, IMAPS/ACerS 6th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT, 18.-21.04.2010), Chiba, Japan, 2010.