Defense and security research at Fraunhofer IKTS

Portfolio
Outline

1. Fraunhofer IKTS in profile
2. Defense and security research application – overview
3. Energy
4. Electronics and microsystems
5. Protective ceramics and structural ceramics
6. Environmental and process engineering
7. Monitoring of infrastructures
8. Contact
Fraunhofer Institute for Ceramic Technologies and Systems IKTS

Facts and figures

Service provider for applied research on the field of high-performance ceramic materials and technologies

- Nearly 800 employees

- 3 IKTS main sites (●), further external groups (◼)

Fraunhofer IKTS overall revenue

- Institutional support
- EU and other revenue
- Public-sector revenue
- Industrial revenue

Institutional support
EU and other revenue
Public-sector revenue
Industrial revenue

Mio. €

- Nearly 800 employees

- 3 IKTS main sites (●), further external groups (◼)

Fraunhofer IKTS overall revenue

- Institutional support
- EU and other revenue
- Public-sector revenue
- Industrial revenue

Mio. €

Fraunhofer Institute for Ceramic Technologies and Systems IKTS

Our business model – service provider for applied research

<table>
<thead>
<tr>
<th>Type of project</th>
<th>Research Projects</th>
<th>Customized Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project initiation</td>
<td>Ideas/requests by customers</td>
<td>Existing results</td>
</tr>
<tr>
<td>Direct offer/order by customers</td>
<td>Public funding (project proposal)</td>
<td></td>
</tr>
<tr>
<td>Project budget</td>
<td>Customer</td>
<td>Germany</td>
</tr>
<tr>
<td>Project results</td>
<td>IPR, know-how, materials owned by customer for an application field</td>
<td>IPR, know-how, materials owned by consortia</td>
</tr>
<tr>
<td>Advantages</td>
<td>Fast, exclusive rights (if required)</td>
<td>Budget supported by government</td>
</tr>
</tbody>
</table>
Fraunhofer Institute for Ceramic Technologies and Systems IKTS

Business divisions

- MATERIALS AND PROCESSES
- MECHANICAL AND AUTOMOTIVE ENGINEERING
- ELECTRONICS AND MICROSYSTEMS
- ENERGY
- ENVIRONMENTAL AND PROCESS ENGINEERING
- BIO- AND MEDICAL TECHNOLOGY
- WATER
- MATERIALS AND PROCESS ANALYSIS
- NON-DESTRUCTIVE TESTING AND MONITORING

SYSTEMS EXPERTISE

MATERIALS DIAGNOSTICS
- Reliability
- Quality assurance

TECHNOLOGY EXPERTISE

MATERIALS EXPERTISE

Public information
High-performance ceramics
Advantages and application options

- High-temperature stability
- Extreme hardness and strength
- Low weight
- Long-term stability
- Biocompatibility
- High corrosion and wear resistance
- Multi-functionalit

Modern ceramic high-performance materials

Industry-relevant technologies

Prototype components and systems

- Mechanical and Automotive Engineering
- Electronics and Microsystems
- Non-Destructive Testing and Monitoring
- Bio- and Medical Technology
- Environmental and Process Engineering

Materials and Processes
Energy
Materials and Process Analysis
Water
02

Defense and security research application

Overview
IKTS technologies
High-performance systems for challenging conditions

- Offgrid-Power and micro CHP with flexible fuels (Fuel cells)
- Protective ceramic (transparent / non-transparent)
- Monitoring of critical systems / infrastructures
- Oxygen Supply with Air separation O₂ generator
- Monitoring of critical systems / infrastructures
- Compact water treatment and purification systems
- High-frequency and sensor systems for harsh environments
- Stationary energy storage
- Materials for protective masks
Fuel cell technologies
- Fuel cells – development and test from component to system
- Flexible Offgrid-power from 1kW to MW range

Material solutions for Li-ion batteries
- Li- and post-Li-technologies
- From powder to pilot scale production

Stationary energy storage
- cerenergy® – Na/NiCl$_2$ battery system for stationary storage
- Container solutions for PV-hybrid systems

SOEC-Stacks for hydrogen generation
- Prototype production of SOFC/SOEC stacks (capacity of 1–10 MW/year) with mPower GmbH
Fraunhofer Institute for Ceramic Technologies and Systems IKTS

Defense and security research application – environmental and process engineering

On-site O₂ generator
- High-temperature oxygen separation with mixed-conducting ceramic membranes.

Power-to-X
- Synthetic fuels and valuable products from renewable energy (biogas, wind, solar)

(On-site) Treatment of process and waste waters
- Self-sufficient and scalable systems for:
 - Disinfection
 - Breakdown of anthropogenic substances
 - Treatment of mining water
 - Treatment of radioactive waste water
Fraunhofer Institute for Ceramic Technologies and Systems IKTS
Defense and security research application – electronics / microsystem technology

- Sensors for extreme harsh environment
 - Ceramic multilayer-technology based on printed sensors for high temperature, aggressive chemical media etc.

- LTCC-based RF- and mmWave packaging
 - High-frequency board for 77 GHz radar for driving assistance systems

- Power electronics
 - Ceramic solutions for power electronic packages: high performance, high suited, reliable
Fraunhofer Institute for Ceramic Technologies and Systems IKTS
Defense and security research application – protective ceramics and structural ceramics

Transparent ceramics for ballistic protection
- Durable protection of optical and sensor systems in harsh environments
- Protective systems for civil / military vehicles

Modular 3D ceramic reinforcements for novel protection concepts – DuktAr
- Protective devices for centrifuges, rotors, recycling plants or for high-speed machining

Ceramic reactor for space application
- Next-gen multimaterial (conductive / non-conductive) for integrated devices
Fraunhofer Institute for Ceramic Technologies and Systems IKTS
Defense and security research application – monitoring of critical systems and infrastructures

Software and digitalization
- In time visualization of complex 3D data by augmented reality
- Machine learning and KI for NDT data interpretation
- DICONDE and data fusion

HF eddy current for CFRP
- Textural analysis of CFRPs
- NDT on damages / repairs
- Non-contact dielectric analysis (heat damages, aging, polymer degradation)
- Crack detection
- Monitoring of conductive coatings (on composites)

Special equipment for on-site material characterization and SHM
- SHM
- NDI for residual strain
- Small defect inspection
- Polymer and glue characterization
- Ultrasonic microscopy

Delivery of ultrasound NDT equipment
- Non-destructive detection of hidden, internal cracks on riveted plate structures
- Robot-based scanners for aircraft inspection
03

Energy
Defense and security research application
Energy
Full cells

Off-grid power supply military applications and catastrophic protection

Challenge
Every operation, whether short-, medium- or long-term, requires a reliable and flexible energy infrastructure for vehicles, surveillance and on-site supply.

Solution
- Fuel Cells for from chemical to electrical energy and heat direct and robust energy conversion
- Various applications for back-up power, off-grid power generation or co-generation of heat and power
- Weight and noise reduction
- Highly flexible fuel usage (diesel, LPG, methanol, hydrogen, …)

Click for further information.
Fuel cell and electrolysis technology @ IKTS

Customized system development from 1W to several MW

<table>
<thead>
<tr>
<th>Power Range</th>
<th>Fuel Type</th>
<th>Technology</th>
<th>Module</th>
<th>Stack</th>
<th>Microtubes</th>
<th>Ceramic</th>
<th>Applications</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 W – hand-held</td>
<td>Hydrogen</td>
<td>PEFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 W</td>
<td>Butane</td>
<td>SOFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 W – portable</td>
<td>LPG</td>
<td>SOFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 kW</td>
<td>Natural Gas</td>
<td>SOFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 kW – stationary</td>
<td>Natural Gas</td>
<td>SOFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 MW</td>
<td>Biogas</td>
<td>SOFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NG / Biogas</td>
<td>MCFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technologies:
- DFC®
- FFC®
- Ceramic Multilayer
- Bundled Microtubes
- Planar Mini-Stack
- Integrated Stack Module
- CFY / Integrated HotBox
- CFY Stack Technology
- DFC® Technology
Energy
Batteries for stationary & mobile energy storage systems

Battery technologies for military application

Challenge
▪ Critical challenges with Li-ion batteries:
 ▪ Abundance and accessibility of (critical) materials
 ▪ Safety
 ▪ System complexity (climate control, energy demand)
 ▪ Longevity

Solution
▪ cerenergy® – the high-temperature battery for stationary energy storage
 ▪ Low cost local raw materials
 ▪ Material cost < 30 $ kWh
 ▪ High safety, because no spontaneous combustion can occur
 ▪ Low system costs (no T-control / simple BMS)
Energy
Oxygen generator

Portable O₂ generator for military operations and catastrophic protection

Challenge
Mobile oxygen generation in deployment scenarios, for example, in the event of a catastrophe or in military field camps

Application
Medical, disaster control or for military operations

Solution
- Highly purified, dry O₂ on-site
- Lowest energy demand (< 0.5 kWh/Nm³ O₂)
- Lowest CO₂ emissions, no O₂ transport
- Recycling of off-gas (O₃ destruction included)
- Wide scalability, recyclability
- Process simplification, small footprint
- Avoidance of supply bottlenecks and safety risks
Electronics and microsystems
Defense and security research application
Electronics and microsystems
Applications for ceramic thick-film and multilayer based components

Ceramic PCB’s
- Standard thick-film
- Multilayer (ULTCC, LTCC, HTCC)
- Power electronics (DCB, AMB)

Sensors for defense and aerospace
- Mechanical (p, F, a, level)
- Thermal (resistor type, thermocouples)
- Chemical (water)
- High accuracy and reliability
- Low weight and power requirements

Components
- Multilayer integrated passives (RLC), multilayer varistors (MLV)
- Chip resistors
- Heaters
- Ceramic MEMS-packages
- LED-, laser diodes packages
- LTCC-based actuators

Green energy
- Solar cells (crystalline, HJT)
- Fuel cells (µPEMFC)
- Li-batteries (printed 3D-electrodes, LLZO-separators)
- Electrode materials for Photo-Electro-Catalysis cells (PEC)
Digitalization, IoT, Industry 4.0

Sensors for extreme harsh environment

Pressure sensors for turbines / jet engines

- Multilayer (LTCC, HTCC)
- T = 300 .. 500 °C
- P = 50 .. 200 bar

Temperature sensors

- Multilayer (HTCC)
- T = 200 .. 1000 °C

MEMS based acceleration sensors

- LTCC-based packages
- Aerosol-Jet-printed wires / contacts
- a .. 100,000 g
Electronics and microsystems
High frequency applications > 100 GHz

Characterization
- Test (f = 0–220/320 GHz), structures (lines 35 µm)
 - Aerosol Jet Printing
 - Laser ablation
 - Screen Printing
 - PI-Pastes

MMIC interconnections
- Printing of HF Interconnections
 - Test MMICs
 - f = 0–320 GHz

Antennas
- Broadband antennas
 - Vivaldi antenna (140 GHz)
 - Stacked Patch antenna (140 GHz)

LTCC packaging
- Full HF packaging
 - MMIC
 - Stacked Patch antenna
 - BGA connection to next level
Electronics and microsystems
High frequency applications > 100 GHz

- Circuit for RF signal conditioning
- Low loss dielectric, 5 metallization layers
- Multi-printed board fabrication (6" x 6"), Automatic tape handling and stacking
- Excellent positioning accuracy, high edge quality of conductor lines
- Cavities with bonding pads for MMIC assembly
- High flatness for SMD soldering processes on top of circuit carrier
- Metallization frame for hermetic sealing
Ceramic thick-film and multilayer technology
2D / 3D-printing technologies for functional film deposition

Screen- / stencil printing
- Mask- based (pastes)
- 2D / 3D (tubular)
- Max. resolution 25 μm

Ink-jet / aerosol-jet printing
- Digital, multi-material (5 inks)
- 2D / 3D, NovaCentrix Pulse Forge
- Max. resolution 10 μm

Additive manufacturing
- A variety of ceramic components – manufactured using the additive manufacturing process FFF

Customized paste / ink formulations for different printing technologies available @ IKTS
- Adaption of solids (functionality, sintering behavior – PSD, specific surface)
- Adaption of binder system (type, viscous behavior, wetting, printing and burn out behavior)
Electronics and microsystems
Electroceramic materials and integration technologies

- **Dielectric and piezoelectric materials**
 - Anti-ferroelectric dielectrics for high-energy power capacitors
 - Piezoceramic materials for sensors and ultrasonic transducers; lead free and textured materials

- **Printed sensors and transducers**
 - Mechanical sensors for force and force field
 - Ultrasonic transducers for SHM, process control, level and distance control
 - Transducers for mechanical energy harvesting

- **Piezoceramic components and piezoceramic-polymer composites**
 - 1-3 piezofiber composites for ultrasonic transducers
 - SONAR transducers in low and high frequency range

- **Complex characterization and modeling**
 - Customer-specific complex electro-mechanical and characterization
 - Material, component and system modeling, simulation
 - Process modeling
Anti-ferroelectric capacitors
High energy density capacitors for power electronics

Advantage
▪ Anti-ferroelectric dielectrics for high capacity and energy density (factor 3 compared to state of the art)
▪ Low leakage at elevated temperatures, low dielectric losses, high DC and thermal stability
▪ No thermal runaway due to permittivity characteristics
▪ Robust multilayer components with low parasitics for fast switching under high frequencies

Applications
▪ DC-link capacitors and snubbers in inverters
▪ Puls capacitors in detonators
Piezoceramic-polymer composites
1-3 composites for ultrasonic transducers

Advantage
- Enhanced electro-mechanical coupling of 1-3 piezocomposites compared to bulk piezoceramic materials
- Piezoceramic fibers of commercially available piezoceramic materials (PZT and lead-free); diameter 100–800 µm
- 1-3 piezofiber-polymer composites with regular or random fiber arrangement

Applications
- Ultrasonic transducers for Sonar (low and high frequency range), imaging, NDT
- Single fiber transducers for ultrasonic computer tomography (USCT)
- Patch sensors, actuators
05

Protective ceramics and structural ceramics
Defense and security research application
Protective ceramics & structural ceramics

Transparent ceramics

Transparent ceramics and PERLUCOR® – for optical systems, medical technology and ballistic protection

Application
- Domes and lenses for military systems
- Detection and sensor windows
- Windows for laser communication
- Infrared temperature scanners
- Infrared night vision devices
- Thermographic devices
- Transparent armor for military and civil use
- Vehicle windshields
- Ground windows for helicopters
- Explosion shields for aircraft
- Windshields for aircraft and spaceship windows
- Security windows in armored vehicles with reduced weight
- Unmanned vehicles, drones

Click for further information.
Protective ceramics & structural ceramics

Transparent ceramics

Transparent ceramics and PERLUCOR® – for optical systems, medical technology and ballistic protection

Advantages

- Extreme robustness, hardness and scratch resistance for longer visibility and functionality
- Efficient use under extreme conditions in industry for safe monitoring of processes, e.g. in production, high-temperature areas, furnace, vision and rotary windows
- Durable protection of optical and sensor systems in harsh environments
Protective ceramics & structural ceramics

Transparent ceramics for optical systems, medical technology and ballistic protection

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw density</td>
<td>(\rho \geq 3.57 \text{ g/cm}^3)</td>
</tr>
<tr>
<td>Hardness (according to Vickers)</td>
<td>(\text{HV}_1 \geq 13.8 \text{ Gpa})</td>
</tr>
<tr>
<td>Refractive index</td>
<td>(n = 1.72)</td>
</tr>
<tr>
<td>Transparency IT (thickness 1 - 10 mm)</td>
<td>(\geq 80%)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>(l \geq 12 \text{ W/mK})</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>(E \geq 280 \text{ Gpa})</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>(\nu \approx 0.22)</td>
</tr>
<tr>
<td>Speed of sound</td>
<td>(V_L \geq 10,000 \text{ m/s})</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>(\varepsilon = 8-9)</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>(\sigma_B = 250-350 \text{ MPa})</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>(\delta \geq 2000 \text{ MPa})</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (30 - 200 °C)</td>
<td>(\alpha \approx 6.9 \times 10^{-6}/\text{K})</td>
</tr>
</tbody>
</table>
Protective ceramics & structural ceramics
3D ceramic reinforcements for novel protection concepts

DuktAr – realization of 3D protection concepts

Challenge
Protection concepts for highly dynamically loaded components in mechanical, plant and vehicle engineering can currently only be realized with high weight (metallic) or with very limited formability (ceramic).

Solution
Use of 3D “topologically interlocked structures” (3D-TIS) made of ceramics (SiC, B4C, Al₂O₃) + flexible carrier material.
Protective Ceramics & Structural Ceramics
3D ceramic reinforcements for novel protection concepts

DuktAr – realization of 3D protection concepts

Application
Protective devices for centrifuges, rotors, recycling plants or for high-speed machining.

Advantages
- Shape optimization and variable size for maximum protection (max. radii of curvature)
- Cost-effective mass production and processing of 3D TIS ceramic bricks (without subsequent mechanical post-processing)
- TIS attachment techniques on flexible carrier material
Protective ceramics & structural ceramics
Diamond-materials for wear applications

Superhard large scale SiC-bonded diamond-materials produced without high pressure

Advantage
▪ Hardness > 35 GPa, KIC = 4-5 MPam1/2;
▪ Strength 300-500MPa
▪ Abrasive wear > 10 times better as B4C-ceramic
▪ Friction coefficient like CVD-diamond coatings
▪ Thermal conductivity up to 650 W/mK
▪ Dense graded SiC-Diamond-materials possible (SiC-Diamant layer thickness 0.3 – 10 mm)

Application
▪ Wear parts, protective ceramics
▪ Components with high thermal conductivity
Protective ceramics & structural ceramics
Diamond-materials for wear applications

Impact wear sand blasting test with 45°
Protective ceramics & structural ceramics

Characterization of ceramic materials, hard metals and components

Equipment and Know how for characterization of...
- Ceramic microstructures as a basis for correlation with properties
- Characterization of mechanical, elastic, electrical, optical properties of materials and components
- Wear mechanisms of ceramic components
- Failure analysis as a basis of improvement of systems

3D binder distribution in WC / Co hard metal.

High temperature hardness measurement.
Ceramic metal composites
For wear, penetration and shielding applications

Combination of high hardness and toughness with high wear resistance)

Solution with heavy elements:
- WC and/or Mo2C and metal binders (Co, Fe, Ni and more) → densities up to 15 g/cm³
- Binderless WC or W-based mixed carbides → densities up to 17 g/cm³

Solutions with light elements:
- TiC, NbC etc. with Co, Fe, Ni binders → densities of around 7 g/cm³
- High entropy based carbides, metal binders and composites (patent pending)
- Higher design freedom and complex integration
Additive manufacturing of cermets and hardmetals by Binder Jetting

For wear, penetration and shielding applications
Protective ceramics & structural ceramics

Ceramic reactor for space application

Application for the turbines / CerAMfacturing + Thick-film technologies

Challenge
Development of new reactor concepts for fuel-efficient turbines in space applications.

Solution
- Highly integrated ceramic reactor
- Combination of additive manufacturing and screen printing allows new reactor concept using H$_2$O$_2$ instead of hydrazine
- Integrated heating system for quick chemical reaction
Protective ceramics & structural ceramics
Ceramic reactor for space application

Application for the turbines / CerAMfacturing + material expertise (thermal co-processing)

Challenge
Complex and highly integrated ignition system.

Solution
- Combinated co-processing of Si$_3$N$_4$ + MoSi$_2$ for integrated igniter in ceramic turbine
- Higher design freedom and complex integration
Environmental and process engineering
Defense and security research application
Environmental and process engineering
Power-to-X for alternative fuels

Environment and civil protection

Challenge
Due to their high energy density and ease of storage, liquid fuels will retain their importance for mobility in the short and medium term.

Solution
- Valuable base and special chemicals from various (renewable) energy sources
- Synthesis gas production from methane, LPG, biogas, ethanol, diesel
- Synthesis of olefins by dehydration of methanol (MTO)
- Fuels by dehydration of methanol (GTO)
- Synthesis of dimethyl ether (DME) from methanol
- Fischer-Tropsch synthesis
- Coupling of water electrolysis and synthesis gas production
- Methanol by oxidation of methane to methanol (GTL)
Environmental and process engineering
Compact & self-sufficient water treatment solutions

Environment and civil protection

Application
Water supply for the civilian population and in the event of a disaster.

Solution
- Self-sufficient, flexibly deployable decentralized supply and storage systems for electricity, heat and water - autartec®
- Highly integrated combination of Advanced Oxidation Process, nanofiltration and disinfection
- Free of biological and chemical consumables
- Real-life piloting in offgrid sea-region
- Compact system design
Environmental and process engineering
Self-sufficient water treatment in rural areas

Environment and civil protection

Advantage
- Water treatment system for 4-person household
- Degradation of organic components and safe disinfection
- No consumables needed, no chemicals or biology
- Simple water treatment for developing countries
- Combination of catalysis and membrane filtration
- Use of ceramic NFE
- Energy supply for water 2 m³ drinking water / day

Example
Water treatment for developing countries with catalytic ceramic membranes.
Environmental and process engineering
Treatment of radioactive contaminated wastewater

Environment and civil protection

Challenge
Purification of the water from pollutants.

Solution
With our radionuclide laboratory, we have an infrastructure that allows us to perform special radiochemical analyses, e.g. by gamma spectrometry or liquid scintillation. Dissolving contaminated media, such as the destruction / elimination of radioactive substances in waste water and residues or the development of processes for separating arsenic, uranium or CHCs from groundwater.

Advantage
- Simple production of c-14 carbonates; capable of continuous filtration
- Treatment of ignitable and / or aggressive organic wastes
- Application for a wide range of substances
- Efficient separation of counter-nuclides by means of electrochemical processes
Environmental and process engineering
MOFs for filtration of hazardous substances

Metal Organic Frameworks (MOFs) for protective masks

Challenge
Metal Organic Frameworks for permeable protective clothings.

Solution
- Combination of MOFs with activated carbon closes absorption gap for higher protection
- Synthesis and tailored shaping of MOF materials
Monitoring of infrastructures
Defense and security research application
Inspection of composite aircrafts
Determination of heat damages / heat affected zones

Sensor Fusion for more successful CFRP testing

Challenge
The established methods for non-destructive testing of carbon fiber reinforced plastics (CFRP) separately provide only limited information about the material. Whether macroscopic properties, texture parameters or the state of the matrix material, none previously available test method alone can answer all questions.

Solution
Together with the Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) Fraunhofer IKTS is therefore working on the combination of different sensors and their measurement data to improve the informational value of non-destructive testing. Through this combination of ultrasonic, eddy current and infrared spectroscopy methods, a more meaningful test result is generated.
Inspection system for electrical conductive coatings on composite aircrafts

Solution

- High-frequency eddy current based impedance spectroscopy of characterization of the percolation process of wet conductive coatings.

Inspection results: Drying curves for different coatings.

Film formation and percolation.

High Developed inspection system for Wright Patterson Air Base / Dayton Ohio.
Laser-Speckle-Photometrie

Inline troubleshooting in high-performance SLM systems

Challenge
Additive manufacturing of metal parts is an efficient strategy for handling of spare parts in distinct regions. Quality control is an essential part of the system to guarantee safety of the overall system.

Solution
The laser speckle photometry (LSP) method developed at Fraunhofer IKTS can ensure the reliability and optimal functioning of AM-process like Selective Laser Melting. The system allows a permanent inspection of every SLM-layer and identifies defects and cracks during operations.
Contact

Maria Kaminski
Marketing
Fraunhofer IKTS | Winterbergstr. 28 | 01277 Dresden

maria.kaminski@ikts.fraunhofer.de
www.ikts.fraunhofer.de