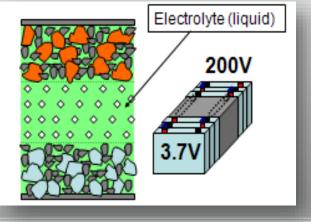
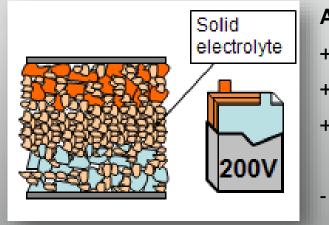
MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID-STATE BATTERIES

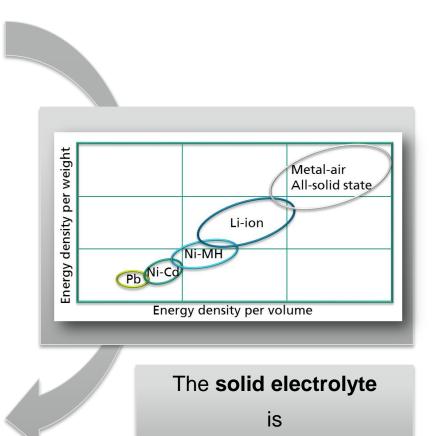
Katja Waetzig, Jochen Schilm, B. Matthey, St. Barth, K. Nikolowski, M. Wolter

Dresden, 20th of September 2017





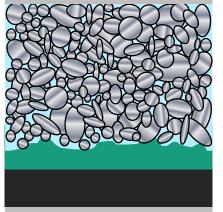
Motivation All-Solid-State Lithium Batteries


Conventional Liquid Electrolyte Li-Ion Battery

- + high voltage and high energy density
- flammable liquid electrolyte

All-Solid-State Lithium Battery

- + higher energy density
- + high-capacity active materials usable
- + safe Li-ion conductive ceramic
 - (non flammable, mechanical stable)
- high internal resistance


a key material !

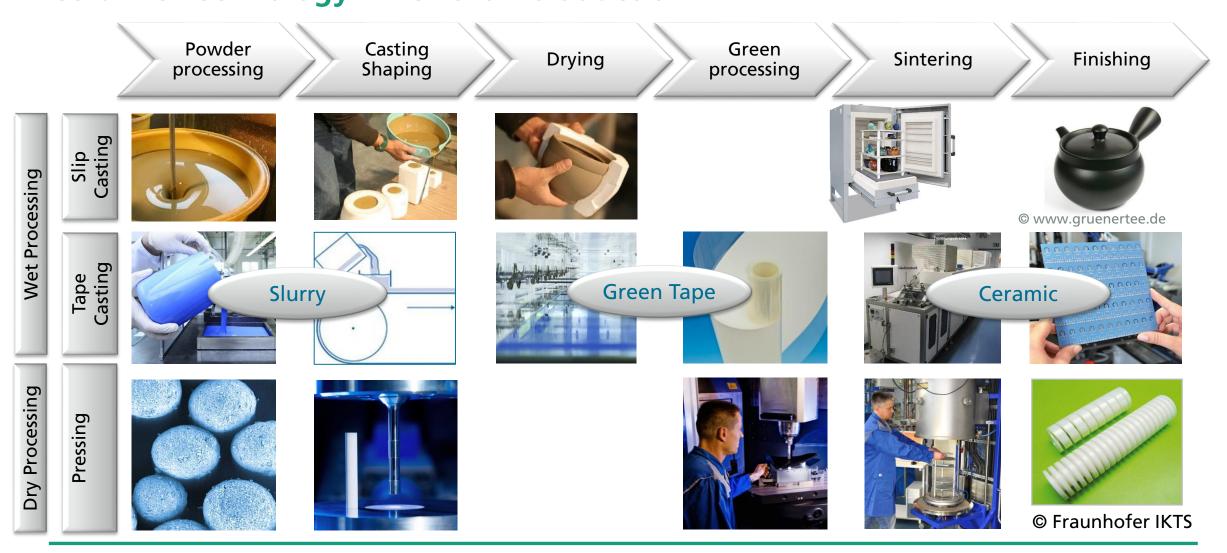
M. Ogawa, K. Yoshida, K. Harada, SEI Technical Review 74, 88-90 (2012).

National Institute of Advanced Industrial Science and Technology (AIST), press release (2010).

All-Solid-State Battery Principal Concept

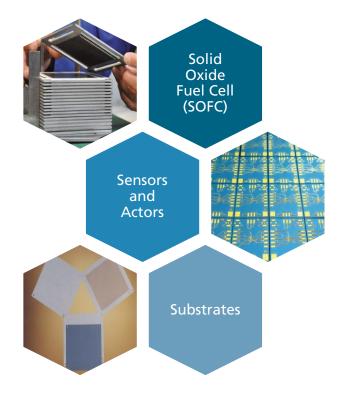
				N 2001 424 1 Jane WO * 5.3 ren. Bland A * 552 17 Jan 2011 H EHT * 2.00 JV Wag * 3.00 K X TE: Carm. + Off T • 0.51
	contacts	aluminum	_/	
	composite cathode	high energy cathode materials (NCM, LNMO) electronic conducting phase: graphite ionic conducting electrolyte phase		
Z	all solid state electrolyte	particle filled polymer, ceramic all solid state		
	anode	lithium metal, composite anode		Tµm
	contacts	nickel	$\langle \rangle$	

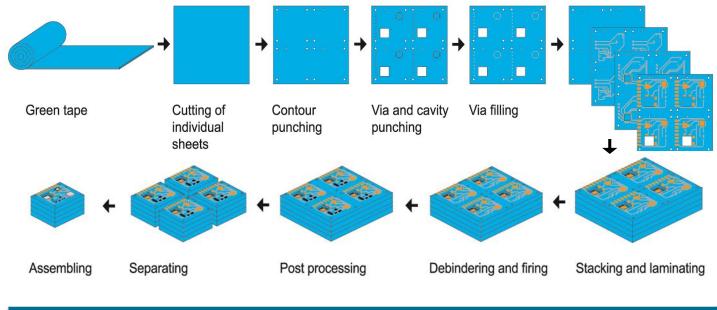
Process technology



Material

Development


Process Technologies Ceramic Technology - A Short Introduction

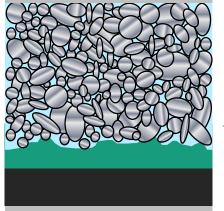


Processing of All-Solid-State Batteries

Multilayer as Established Ceramic Technology

Technology	Thickness before Sintering (µm)	Thickness after Sintering (µm)
Tape Casting	50 - 500	40 - 400
Screen Printing	10 - 100	8 - 80
Other Printing Techniques	< 10	< 8

Is it possible to process All-Solid-State Batteries as multilayered ceramic?



Processing of All-Solid-State Batteries Roll-to-Roll - Challenges

All-Solid-State Battery Principal Concept

	<u>contacts</u> composite cathode	aluminum high energy cathode materials (NCM, LNMO) electronic conducting phase: graphite ionic conducting electrolyte phase		Parallel and the second s
R	all solid state electrolyte	particle filled polymer, ceramic all solid state		
	anode	lithium metal, composite anode	Tµm	
	contacts	nickel		

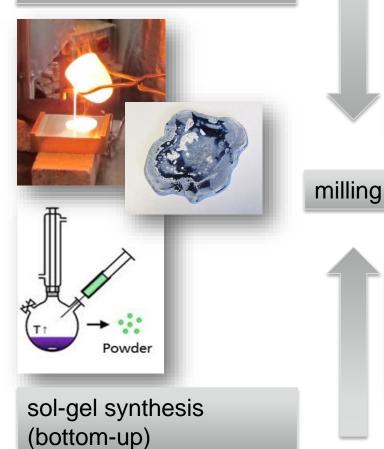
Material

Dey

elopment

Material Development

Li-Ion Conductive Separators and Solid Electrolytes

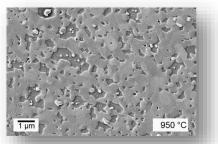

Туре	Materials	Conductivity (S cm–1)	Advantages	Disadvantages
Oxide	Perovskite $Li_{3.3}La_{0.56}TiO_3$, NASICON LiTi ₂ (PO ₄) ₃ , LISICON Li ₁₄ Zn(GeO ₄) ₄ and garnet Li ₇ La ₃ Zr ₂ O ₁₂	10 ⁻⁵ –10 ⁻³	 High chemical and electrochemical stability High mechanical strength High electrochemical oxidation voltage 	 Non-flexible Expensive large-scale production
Sulfides	Li ₂ S–P ₂ S ₅ , Li ₂ S–P ₂ S ₅ –MS _x	10 ⁻⁷ –10 ⁻³	 High conductivity Good mechanical strength and mechanical flexibility Low grain-boundary resistance 	• Low oxidation stability • Sensitive to moisture • Poor compatibility with cathode materials $Li_{1.3}AI_{0.3}Ti_{1.7}(PO_4)_3(LATP)$
Hydrides	LiBH ₄ , LiBH ₄ –LiX (X = Cl, Br or l), LiBH ₄ –LiNH ₂ , LiNH ₂ , Li ₃ AlH ₆ and Li ₂ NH	10 ⁻⁷ -10 ⁻⁴	 Low grain-boundary resistance Stable with lithium metal Good mechanical strength and mechanical flexibility 	• Sens • Poo with c 10^0 $Li_{14}Zn(GeO_4)_4$ LISICON Li_2S -SiS ₂ -Li ₄ SiO ₄ glass Li_2S -SiS ₂ -P ₂ S ₅ -Lii glass
Halide	Lil, spinel Li_2ZnI_4 and anti-perovskite Li_3OCI	10 ⁻⁸ -10 ⁻⁵	 Stable with lithium metal Good mechanical strength and mechanical flexibility 	• Sens 5 • Low 9 10 ⁻² Li ₃ N
Borate or Phophate	$Li_2B_4O_7$, Li_3PO_4 and $Li_2OB_2O_3-P_2O_5$	10 ⁻⁷ -10 ⁻⁶	 Facile manufacturing process Good manufacturing reproducibility Good durability 	• Low • Rela condu 10 ⁻⁴ LiPON LiPON LiPON Lipon Lipon Lipon Lipon Lipon Lipon Lipon
Thin film	Lipon	10 ⁻⁶	 Stable with lithium metal Stable with cathode materials 	• Exp(10 ⁻⁵ LI _{3.4} V _{0.6} Ge _{0.4} O ₄ perovskite -
	um phosphorus oxynitride; LIS thylene oxide).	ICON, lithium su	perionic conductor; NASICON, sodium superio	hic cond 10^{-6} 1 1.5 2 2.5 3 3.5 4 1000 / T

A. Manthiram, X. Yu, S. Wang, NATURE Reviews, Materials 2 (2017) 16103.

Material Development Synthesis of LATP Electrolyte Ceramic

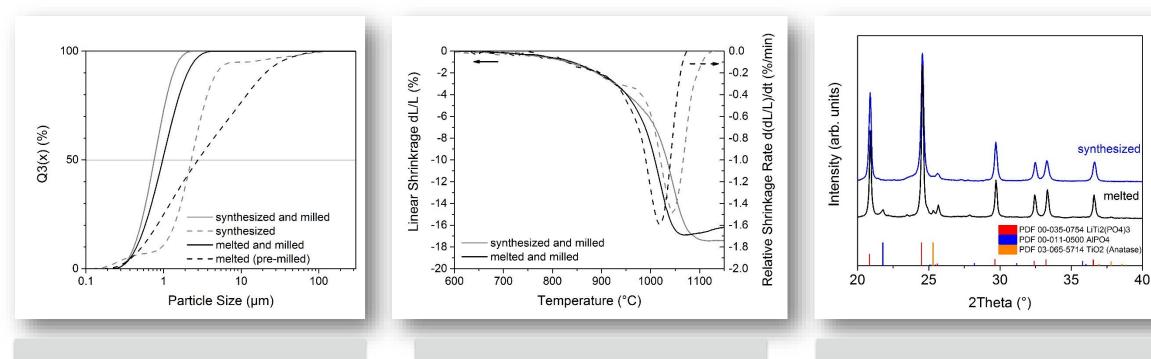
melting and quenching (top-down)

milled powder



spark plasma sintering (SPS)

sintering under pressure


characterization

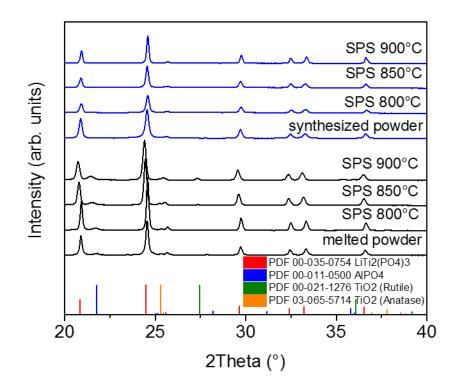
microstructure of ceramic

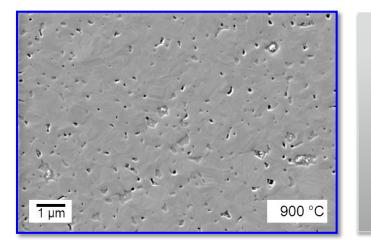
Material Development Characterization of LATP Powder

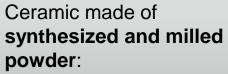
Particle size distribution

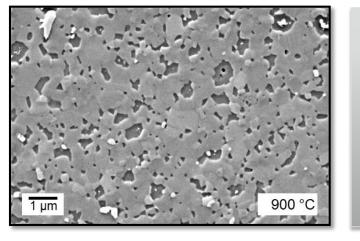
 comparable particle size of both powders after intense milling

Sintering shrinkage

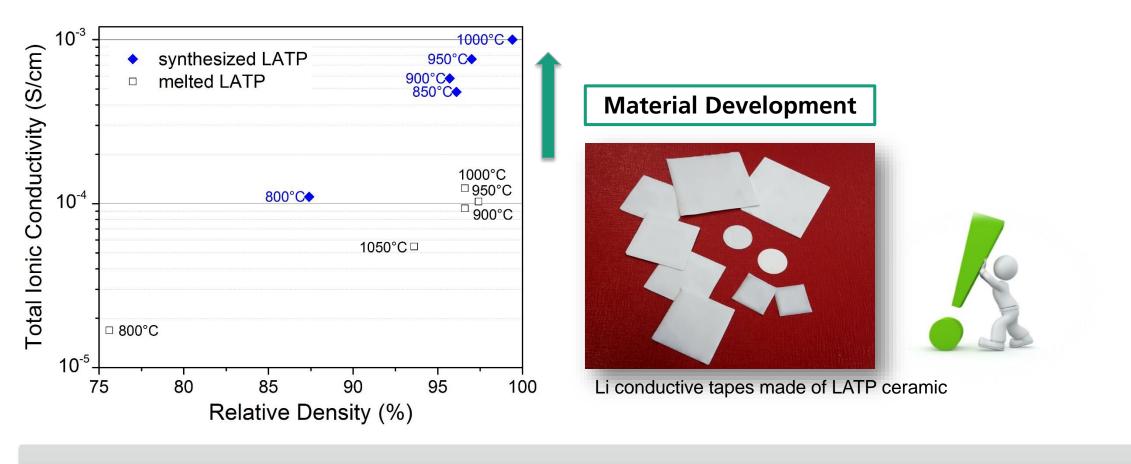

 comparable sintering shrinkage of both powders


Phase analysis


- phase purity of synthesized powder
- secondary phases after melting and quenching


Material Development Characterization of LATP Ceramic

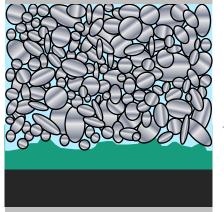
- fine grains
- less porosity
- reduced content of secondary phases



Ceramic made of **melted**, **quenched and milled powder**:

- fine grains
- less porosity
- high content of secondary phases

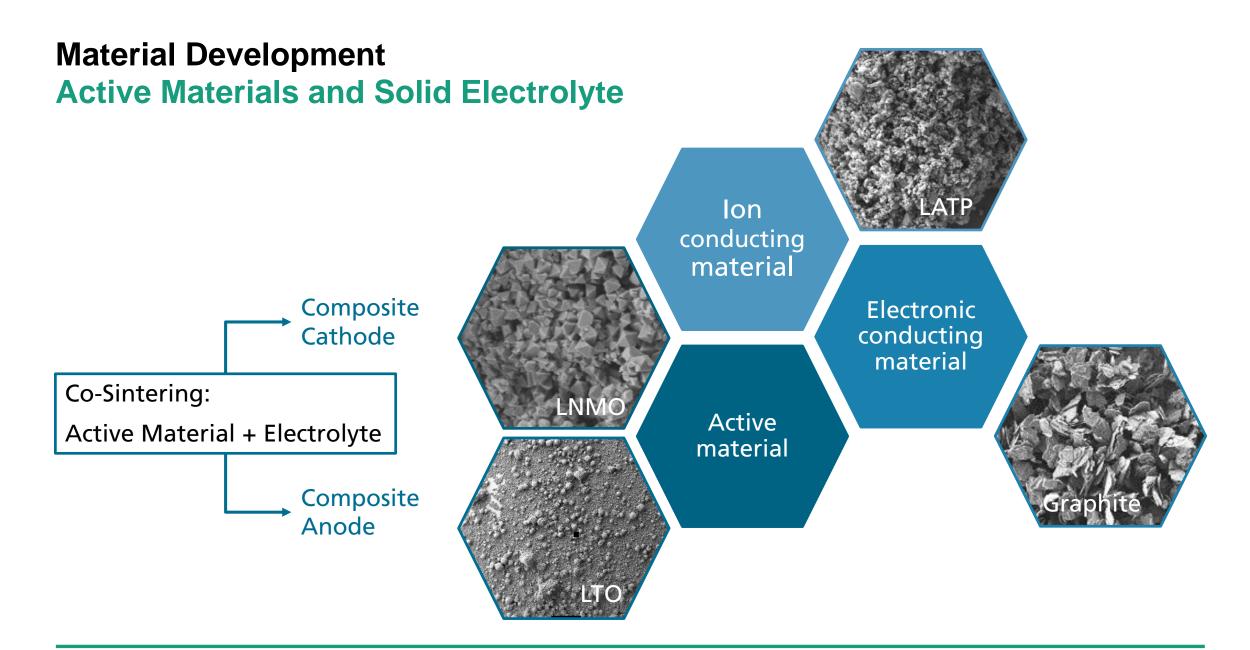
Material Development Characterization of LATP Ceramic

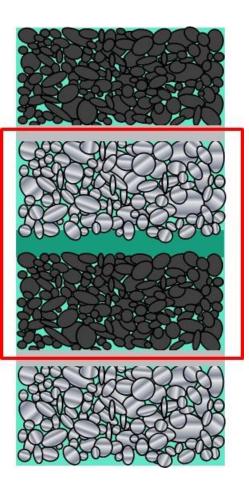


Highest total ionic conductivity of ceramic made of synthesized and milled LATP powder

1 ·10⁻³ S/cm

All-Solid-State Battery Principal Concept

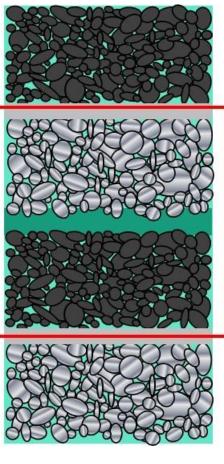

	<u>contacts</u> composite cathode	aluminum high energy cathode materials (NCM, LNMO) electronic conducting phase: graphite ionic conducting electrolyte phase	
S	all solid state electrolyte	particle filled polymer, ceramic all solid state	
	anode	lithium metal, composite anode	Ţμm
	contacts	nickel	



Cell concept based on LATP electrolyte

Kathode	Anode	[V]	electrolyte	[Wh/l]	[Wh/kg]	
LNMO	LTO	3.2	liquid	479	180	
LNMO	LTO	3.2	LATP	702	199	8 % LATP
LNMO	LTO	3.2	LATP	588	174	20 % LATP
LNMO	Lithium	4.7	LATP	1094	411	8 % LATP
LNMO	Lithium	4.7	LATP	926	348	20 % LATP

- Cathode: 2.9 mAh/cm², 90% LNMO, 8 % LATP, 2% graphite; // 77% LNMO, 20 % LATP, 3% graphite
- Anode: 2.9 mAh/cm², 90% LTO, 8 % LATP, 2% graphite// 77% LTO, 20 % LATP, 3% graphite
- LATP electrolyte: 5 µm thickness
- Significant influence of ion conducting phase on specific energy density
 → object of process development



Cell concept based on LATP electrolyte

Kathode	Anode	[V]	electrolyte	[Wh/l]	[Wh/kg]	
LNMO	LTO	3.2	liquid	479	180	
LNMO	LTO	3.2	LATP	702	199	8 % LATP
LNMO	LTO	3.2	LATP	588	174	20 % LATP
LNMO	Lithium	4.7	LATP	1094	411	8 % LATP
LNMO	Lithium	4.7	LATP	926	348	20 % LATP

Lithium Anode	Composite Anode made of LTO / LATP	Se la compañía de la comp
 + higher potential difference (4.7 V) + increased energy density per volume / weight 	 + processing with conventional technologies + no safety risk + no dendrite growth + high rate capability 	
 Processing under inert atmosphere higher safety risk dendrite growth 	 lower potential difference (3.2 V) moderate energy density per volume / weight 	OU

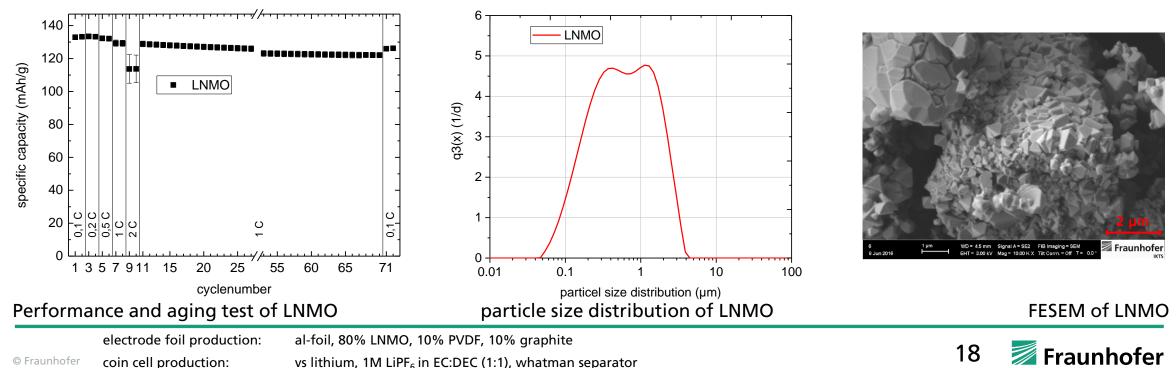
Material Development – Composite Cathode Powder synthesis of cathode material LiNi_{0.5}Mn_{1.5}O₄ (LNMO)

Investigation of synthesis parameters for material properties adapted to solid state battery application

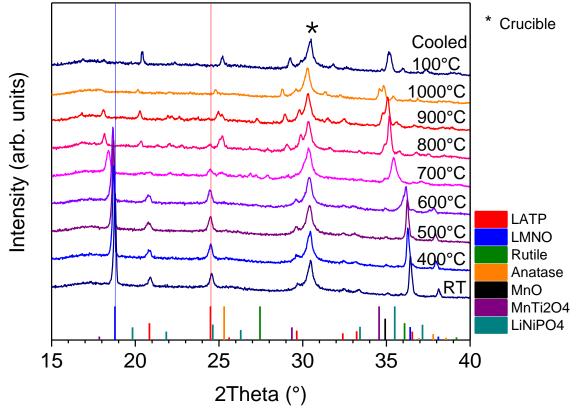
Scale up spray drying process, granulate particles

Precursor composition Pre-Calcination (T, t) Calcination (T, t)

- \rightarrow nucleation, morphology
- \rightarrow homogeneity
- \rightarrow phase, crystallite size


parameters for LNMO-synthesis

- → acetate-salts
- \rightarrow 5 h at 800 °C followed by grinding
- \rightarrow additional 5 h at 800 °C


Material Development – Composite Cathode Powder synthesis of cathode material LiNi_{0.5}Mn_{1.5}O₄ (LNMO)

- The as descripted synthesized LNMO shows defined particles and good electrochemical properties
 - Octahedral crystals, crystal size below 4 µm
 - 133 mAh/g at 0.1 C, 94 % capacity lost over 60 cycles

IKTS

Material Development – Composite Cathode Co-Sintering of LMNO and LATP (50 wt%)

Transformation of Phases

- Decomposition of LATP and LMNO (600 700 °C)
- Formation of MnO, MnO₂ and LiNiPO₄ (> 600 °C)
- Completed reaction between LATP and LMNO at 800 °C

Sintering temperature of LATP have to be reduced!

Increased shrinkage > 900 °C by reaction of both components

700

Temperature (°C)

800

600

0

-5

-10 -

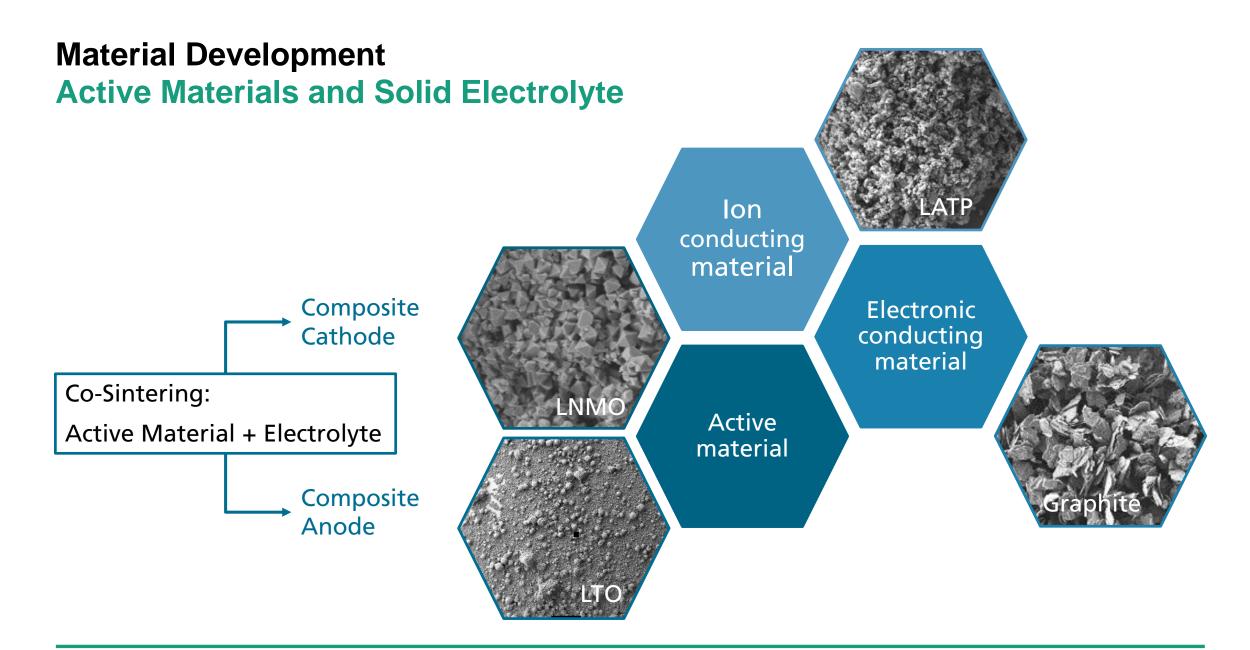
-15 -

-20 -

400

LNMO LATP

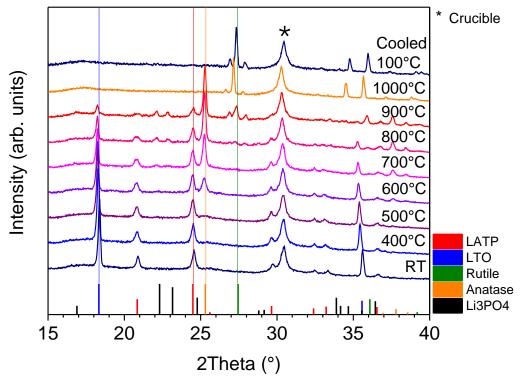
500


50 Ma.-% LMNO + LATP

Relative shrinkage (%)

900

1000


Material Development – Composite Anode Commercial Li₄Ti₅O₁₂ material

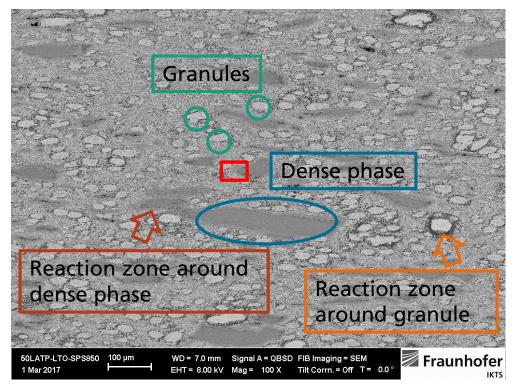
- Commercial powder from Huntsman; Hombitec LTO5
- Measured capacity 169 mAh/g (at 0.1 C) in conventional electrode morphology
- Only slightly sintered agglomerates; primary particles <1µm particle size → good characteristics for solid state electrodes

Material Development – Composite Anode Co-Sintering of LTO and LATP (50 wt%)

0 Relative shrinkage (%) LTO LATP -5 50 Ma.-% LTO + LATP -10 --15 --20 -400 500 600 700 800 900 1000 Temperature (°C)

Increased shrinkage > 820 °C by reaction of both components

Transformation of Phases

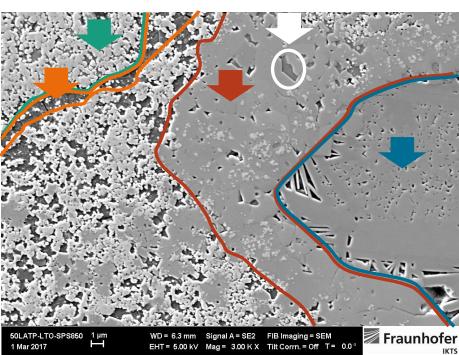

- Formation of Anatase (> 500 °C)
- Transformation of Anatase → Rutile (> 800 °C)
- Formation of Li₃PO₄ (> 600 °C)
- Completed reaction between LATP and LTO at 1000 °C

22 Fraunhofer

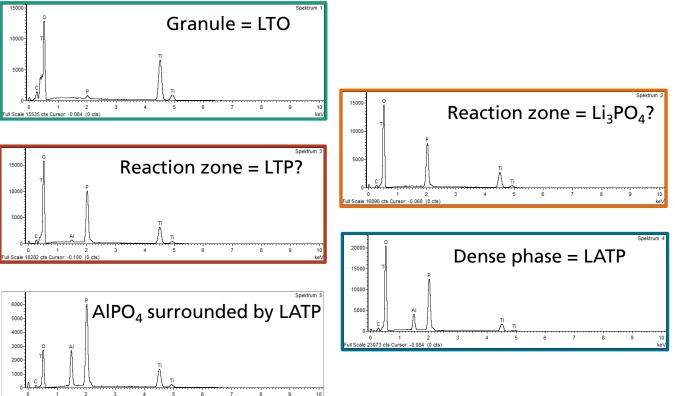
Material Development – Composite Anode Co-Sintering of LTO and LATP (50 wt%)

	Sintering	Density g/cm³	Conductivity S/cm
LATP	SPS 850°C	2.82 (97%)	5 * 10 ⁻⁴
LATP+LTO	SPS 850 °C	3.23 (~100%)	not measurable

Theoretical Densities LATP: 2.92 g/cm³ LTO: 3.48 g/cm³ 50 wt% LATP and 50 wt% LTO: 3.20 g/cm³



Microstructure of Spark Plasma Sintered LTO and LATP mixture (850 °C)


→ No continuous pathways of Li conductive LATP electrolyte through microstructure

Mixture of anode material and solid electrolyte LTO and LATP (50 wt%)

Microstructure of Spark Plasma Sintered LTO and LATP mixture (850 °C)

Consequences

Full Scale 6891 cts Cursor: -0.084 (0 cts

➢ Optimized dispersion of particles → Homogeneous mixing of both components

Material Development – Composite Anode Co-Sintering of LTO and LATP (50 wt%)

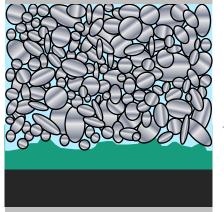
	Sintering	Density g/cm³	Conductivity S/cm
	low intens	ive mixing	
LATP	SPS 850°C	2.82 (97%)	5 * 10 ⁻⁴
LATP+LTO	SPS 850 °C	3.23 (~100%)	not measurable
	high inten	sive mixing	
LATP+LTO	SPS 850°C	3.01 (81.1%)	not measurable
LATP+LTO	SPS 750°C	2.23 (69.6%)	9 * 10 ⁻⁷

🖉 Fraunhofer 50LATP-LTO-03SPS7501 μm 11 Sep 2017 Signal A = AsB EHT = 7.00 kV Mag = 3.00 K X Tilt Corrn. = Off T = 0.0

Microstructure of LTO and LATP mixture (SPS 750 °C)

Theoretical Densities LATP: 2.92 g/cm³ LTO: 3.48 g/cm³ 50 wt% LATP and 50 wt% LTO: 3.20 g/cm³

→ Pathway of Li conductive LATP electrolyte through microstructure
 → Inhomogeneous microstructure



Materials Development Conclusion

- Temperatures for co-sintering should be: Anode < 500 ° C; Cathode < 600 ° C</p>
- Next Steps:
 - Investigation of graphite stability in binary and ternary mixtures of electrode materials
 - Investigation of mixing parameters for optimum dispersion of the particles (percolating network of LATP and graphite)
 - Investigation of approaches to liquid phase sintering \rightarrow reduction of sintering temperatures
 - Optimization of densification of the electrode microstructure (minimum porosity)

All-Solid-State Battery Principal Concept

	contacts	aluminum	_/	
2833	composite cathode	high energy cathode materials (NCM, LNMO) electronic conducting phase: graphite ionic conducting electrolyte phase		
Y	all solid state electrolyte	particle filled polymer, ceramic all solid state		
	anode	lithium metal, composite anode		Тит
	contacts	nickel		

Material Development

Process technology

Conclusion and Outlook

Process technology

- Usage of conventional ceramic technologies (tape casting, screen printing, ...) → Compatibility of organic and inorganic materials ?
- Continuous fabrication possible \rightarrow Co-sintering of active materials and electrolyte ?
- Contacting with Lithium metal (anode) or other metals as current collectors ?
- Material development
 - Different Li-conductive electrolyte are known
 - Sintering of ceramic electrolyte at high temperatures (800 1000 °C)
 - Reaction of active materials and electrolyte during co-sintering \rightarrow Reduction of sintering temperatures (< 800 °C)

Acknowledgement

- Department of M. Kusnezoff Fraunhofer IKTS
 - I. Eichler, K. Jungnickel, C. Frey, D. Wagner, A. Rost, M. Fritsch, V. Sauchuk
- Department of M. Wolter Fraunhofer IKTS
 - C. Heubner, A. Nickol, M. Seidel
- Department of M. Herrmann Fraunhofer IKTS
 - A. Potthoff, M. Striegler, B. Weise, and colleagues
- "KerFolyt" funded by the Fraunhofer internal program MEF (Grant No. 600660)
- "EMBATT1.0" funded by the Europäische Fonds für regionale Entwicklung (EFRE) and the Freistaat Sachsen
- "EMBATT2.0" funded by the German Federal Ministry of Education and Research BMBF (No. 03XP0068G)
- "ARTEMYS" funded by the German Federal Ministry of Education and Research BMBF

Thank you for your attention!

www.ikts.fraunhofer.de

